
VODCA 2006

A Holistic Approach to Security Policies
– Policy Distribution with XACML over

COPS

Jan Petersa Roland Riekeb Taufiq Rochaelic

Björn Steinemannb Ruben Wolfb

a Fraunhofer Institute for Computer Graphics Research IGD, Germany

b Fraunhofer Institute for Secure Information Technology SIT, Germany
c Technical University of Darmstadt, Department of Computer Science, IT-Security group, Germany

Abstract

The potentials of modern information technology can only be exploited, if the underlying infrastructure and
the applied applications sufficiently take into account all aspects of IT security. This paper presents the
platform architecture of the SicAri project, which aims to build a security platform for ubiquitous Internet
usage, and gives an overview of the implicitly and explicitly used security mechanisms to enable access
control for service oriented applications in distributed environments. The paper will introduce the security
policy integration concept with a special focus on distribution of security policies within the service infras-
tructure for transparent policy enforcement. We describe in details our extensions of the COPS protocol to
transport XACML payload for security policy distribution and policy decision requests/responses.

Keywords: service platform, security policies, policy distribution, policy decision, policy enforcement,
Web services, XACML, COPS.

1 Introduction

Professional usage of today’s communication and collaboration infrastructures re-
quires the consideration of appropriate security measures. In this paper, we intro-
duce the SicAri [4] project – an interdisciplinary approach to information security.
The project covers technical, cryptographic and usability issues, as well as various
legal issues in information security with respect to legislation and jurisdiction. The
overall goal is the conception and realization of a Java-based security platform and
its tools for ubiquitous Internet usage.

This platform supplies a bunch of applications and provides various security
services to the user in a transparent, seamless and integrated way. It is a modular
and integrative platform that allows the connection of various end user devices,
such as PCs, PDAs, and ambient intelligence devices and gives support for various
network types (e. g., wired and wireless networks) and communication paradigms

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Peters, et al

(e. g., client-server, peer-to-peer or ad-hoc networks). The behavior of the platform
in terms of security related action can be determined by security policies. They
provide a well-understood and suitable means to administer security issues. Such
policies allow to separate the administration, decision finding, and enforcement of
access control. But using policies raise additional questions in distributed environ-
ments where applications, services and nodes dynamically join and leave the system.
The distribution of policies, especially at bootstrapping time, and their update and
synchronization process has to be particularly considered. While open standards
and open source solutions for single isolated tasks around security policies exist we
have not been aware of any open holistic approach to them.

This paper first presents the SicAri platform from a conceptual, an architectural,
and partially from an implementation point of view, but the main focus is on our
distribution model of the underlying platform security policy which is based on the
Common Open Policy Service (COPS) protocol. We extended the COPS protocol
with a client type specification to transport eXtensible Access Control Markup

Language (XACML) policies.
The subsequent paper is structured as follows. Section 2 gives an overview of the

layers and the components of the platform. The holistic security policy approach
is described in Section 3, while Section 4 presents the policy processing including
policy enforcement, policy decision and policy distribution. Section 5 considers
some related work. Finally, the paper ends with an outlook in Section 6.

2 The SicAri Platform

The main function of the SicAri platform is to provide interfaces to the user’s appli-
cation to access the services provided by the platform, which are basic services and
application services (see below). Together with the middleware, the platform also
provides the communication infrastructure between distributed components. This
is realized through a consistent service management comprising service discovery,
service description, and service invocation. If desired, local services are automati-
cally provided as Web services to remote platforms during runtime, which enables
the interoperability of our service platform with other service-oriented architectures.

In case of new users requiring new application services, the platform architecture
supports modular and extensible building blocks, adding the possibility to incor-
porate new services. Therefore, reusability of existing building blocks should be as
easy as possible for developers.

All security related aspects of a platform instance are regulated by a security
policy. In the case of multiple platforms interacting with each other, all platforms
running in the same SicAri infrastructure share the same security policy. Each
platform has its own policy enforcement component. Access attempts to local or
remote services and resources are checked against the security policy considering the
requester’s current session ID with respect to a single-sign-on mechanism, activated
roles, the available permissions, and other parameters. In addition to policy deci-
sion and enforcement, the platform further covers the aspects of policy generation,
administration, and validation (cf. Section 3).

Thereby, the platform’s architecture features a holistic approach to security

2



Peters, et al

policies based on current standards and the support of implicit and explicit secu-
rity mechanisms in heterogeneous and distributed service infrastructures. Mobile
devices can easily be connected to this infrastructure directly, when running the
SicAri middleware, resp. through security-aware gateway components and specific
protocols, in case the full platform does not execute on the mobile device due to
resource limitations.

In spite of the platform features that are mentioned above, the platform is
not intended to completely replace the existing information infrastructure nor its
existing security mechanism, such as firewall, etc. The platform rather gives the
opportunity of building distributed and security-centered applications on top of its
service infrastructure, which can easily be extended or be plugged into existing
infrastructures.

2.1 Platform Architecture

Figure 1 (left-hand side) gives a high-level overview of the generic service architec-
ture. On top of the middleware, there is a service and application layer. A locally
authenticated user can directly interact with applications defined on this layer.
The applications themselves make use of the basic and application-specific services
of the platform’s service layer. On the one hand, these services integrate external
databases, legacy systems and applications; on the other hand, they provide ba-
sic security mechanisms, such as authentication or access control. The middleware
layer is responsible for the secure and seamless integration and communication of
applications and services, locally and remote.

App.

A


App.

B


App.

C


Service


1


Service


2


Service


n


App.

Z
...


...


Data-

base


Legacy

System


Extermal

Application


Service

Layer


SicAri

Middleware


Middleware

Layer


Application

Layer


External

Application

Layer


SciAri

User


User

Layer


SicAri

Platform


SicAri Services


SicAri Kernel


Shell
 Environment

Security

Manager


Service

Service


Basic Service

Service


Service
Application

Service


Java Virtual Machine


SicAri Platform Instance


Operating System


Fig. 1. High-level and layered architecture of the SicAri platform

The platform is based on the SicAri kernel (see right-hand side of Figure 1) which
runs on top of a Java Virtual Machine and thereby attracts a broad spectrum of
potential users and of potential devices, ranging from mobile devices and personal
computers to scalable, distributed environments.

The user application that runs on the platform accesses obligatory basic services
and optional application services provided by the platform. The entirety of installed
services thereby constitutes the characteristic and specific use case of the local
platform instance.

Thus, this platform is rather a collection of services which are flexibly loaded and
configured within a common environment on top of a Java Virtual Machine, than a
monolithic system designed as one static piece of software. Due to this architecture
the platform offers the following advantages: minimalist design, modularity and

3



Peters, et al

reusability of services, extensibility, maintainability and intrinsic security features
of the kernel.

2.2 Platform Components

This sections briefly describes the basic components of the architecture.

Environment. The environment is a hierarchical name space for service object in-
stances. Object instances can be registered, looked up, searched for, and removed.
This mechanism for local service management and service discovery is extended
by the transparent use of Web services for platform communication among dis-
tributed platforms. Services registered within this environment are implicitly
encapsulated by a security proxy which enforces the current security policy on a
search resp. access request to a service object.

Shell. The shell is a user interface for the environment. It allows administration of
and access to the environment. Hence, it supports at least the afore mentioned
operations register, lookup, search, and remove of object instances. Furthermore
it allows navigation in the name space and invoking of Java methods. The SicAri
shell compares to a UNIX Shell, where the environment stands for the file systems
and services can be compared with files.

Security Manager. The security manager is responsible for policy enforcement.
The Java programming language provides a standard security manager [9] which
is accessible via an API. SicAri replaces this security manager with an own im-
plementation.

Service. A service is a piece of software which fulfills a very specific task. It
provides a small, well-defined programming interface. Typically there is no direct
interaction between the user and a service. Every service is published as an
object instance in the environment which allows access from other services and
applications. Services are retrieved by means of the environment’s search and
lookup functionality. The service may be separated in a local access stub and
one or more remote components which provide the functionality. Further, a
service can integrate legacy applications and external data sources into the SicAri
architecture, by means of a wrapper or proxy.

SicAri kernel. The SicAri kernel (or just kernel) consists of the Java implemen-
tations of the environment, the shell, and the SicAri security manager as defined
above. Together they provide service bootstrapping and configuration, local ser-
vice management (registration/searching), and a consistent security context by
means of implicit access control.

SicAri platform. The platform consists of the kernel started on top of a Java
Virtual Machine, a number of mandatory basic services, and optional application
services. Any application can rely upon the availability of the basic services, as
there are among others the authentication manager, the identity manager, the
cryptographic key master, and the policy service.

SicAri infrastructure. The infrastructure is a compound of several platforms
managed by the same security policy. These platforms may be distributed within
the infrastructure.

4



Peters, et al

SicAri application. An application is a software which fulfills a complex task.
Since it usually interacts with the user, it provides both an interfaces for user-
interaction and a programming interface. Applications make use of services in
order to fulfill their tasks.

3 Holistic Approach to Security Policies

Policy-based control of networks and computer systems has the benefit that the
controlling units of the system are kept decoupled from the management compo-
nents and the rule base that governs the decisions. This enables the administrator
to easily run, manage and change the system’s behavior without having to modify
the software or the controlled nodes. The system is controlled by policies that spec-
ify behavior rules which are interpreted by decision components and are asserted
by enforcement components. Hence, if conditions change or new services or appli-
cations are added to the system one just adapts the policy rules. Using a central
administration component the platform administrator does not have to deal with
the multitude of different nodes in the system. This applies to network management
issues, e. g. Quality of Service (QoS) or resource allocation, as well as to network
and service security.

All security related tasks of the platform are controlled by a security policy.
The platform covers various aspects of security policies, such as policy specification,
policy patterns and policy compiler (see below), policy decision and enforcement,
policy negotiation and provisioning, policy administration, and conflict resolution.
Thereby, the security policy integration concept is based on manifold requirements
with respect to policies, as for example:

• Control of all security related processes and tasks. Impossibility to bypass the
policy enforcement component.

• Compatibility of the policy framework with the platform’s plug-in approach.
No need to change existing or upcoming services in order to enforce the plat-
form’s security policy. Transparency of policy control.

• Consideration of trade-off between expressiveness and complexity of the policy
description language.

• Support for platform administrators during policy management.

It is another goal of the platform to bridge the gap between the informal speci-
fication of security policies (i. e., what the security administrator wants to enforce)
and its corresponding machine-readable policy specification (i. e., what the system
actually enforces).

3.1 Policy Architecture

The policy architecture comprises the components of the policy framework and their
interactions in order to guarantee that all security relevant processes in the platform
are fulfilled according to the underlying security policy. Access control policies are
based on the Role-based Access Control (RBAC) standard. The general concepts of
RBAC are well-understood and extensively described in the literature, please refer

5



Peters, et al

to [7,13,19]. RBAC is assumed to be policy-neutral. This means that RBAC pro-
vides a flexible means to deal with arbitrary security policies. The policy integration
concept of the SicAri platform requires the interaction of various components. Our
implementation of RBAC uses XACML [12] as its specification language.

XACML thereby serves as ”glue” between a couple of policy components: Start-
ing with the policy generation process which leads to XACML-based user-role as-
signments and XACML-based role-permission assignments, this XACML specifica-
tion is used as basis for policy validation, afterwards. The validated policy then is
distributed to resp. updated at all PDPs, and subsequently used for policy decisions.

Figure 2 depicts the component framework of the SicAri policy architecture.
The remainder of this section gives a more detailed overview of all the components
involved and their interactions with other components.

SicAri Applications

Platform
Authentication

Policy
Enforcement

SicAri
Services

Policy
Generation

Policy
Provisioning

Policy
Validation

Policy
Decision

Policy
Administration Security

Policy

Fig. 2. Policy components of the SicAri platform

Policy Generation. We currently focus on generation of policies for access con-
trol to resources representing the required security properties. Such a policy is
generated using policy patterns formalized in OWL [5] that allow to specify tem-
plate policy archetypes for recurring security requirements. Policies are usually
derived from security requirements of business or organizational goals. For exam-
ple, the execution of the tasks ”credit request” and ”credit approval” with respect
to a banking scenario require two different persons to give their affirmation to
complete the task. This security requirement can be satisfied by introducing an
assignment constraint in the model, for example, separation of duty.

Policy generation leads to a policy specification conforming with the RBAC
profile of the XACML 2.0 standard [14].

Policy Validation The task of the policy validation component is to evaluate,
whether a policy correctly implements given security goals. We extended the SH
verification tool [15,16] to accept a subset of XACML as input and to translate

6



Peters, et al

it into transition patterns, which specify the behavior of Asynchronous Product

Automata (APA). APA are a class of general communicating automata and pro-
vide a means to model arbitrary distributed systems while transition patterns
define the possible state transitions of the modeled system. Each policy rule is
converted into such a transition pattern which then encodes the action that is
controlled by that rule. This in turn results in an operational model of the policy
system that can be executed in the SH verification tool. It allows to analyze the
policy system’s behavior, to simulate its potential information flow and to verify
the wanted security goals. For that purpose the system’s reachability graph is
computed which spans all possible sequences of transition steps that are allowed
by the given policy.

We have chosen to support a subset of XACML that comprises the most im-
portant elements and attributes of the language. One first goal was to reach
the expressiveness that allows to handle one well-known XACML example which
has been validated in the literature before [2,8]. Some concepts of XACML like
obligations and rule combining algorithms are not yet supported.

Policy Administration. Even if the ability of automated security policy genera-
tion is provided by the platform, there may be the need of fine granular policy
administration, e. g. a new user needs to be added, or the permissions of a user or
role need to be changed. Therefore, we provide an administration API based on
the RBAC standard and a corresponding graphical user interface (cf. Figure 3).

Fig. 3. Policy administration

Policy Provisioning. The components for policy generation, validation, and ad-
ministration mutually share access to the global security policy database con-
taining the current XACML-based policy specification. This whole policy spec-
ification resp. changes of policy subsets are subsequently distributed by policy
provisioning components. The component covers distribution of policies, policy
updates, as well as transport of policy decision requests and responses. Policy
provisioning is outlined in more detail in the next section.

Policy Decision. The policy decision component uses an extended version of SUN’s
reference implementation of an XACML evaluator [20]. It comprises of library
classes that can be used in building a Policy Enforcement Point (PEP) or a Pol-

7



Peters, et al

icy Decision Point (PDP). Since we use the RBAC profile of the XACML 2.0
standard to specify our policies, some modifications were necessary in order to
evaluate these XACML policies.

As described above, the policies in form of an RBAC model are stored into three
different categories, namely: Role Policy Set (RPS), Permission Policy Set (PPS)

and Role Authorization (RA). The RPS and the PPS contain the roles definition
and their corresponding permissions, respectively. Therefore, each RPS has a
reference to the corresponding PPS. However, the implementation of SunXACML
version 1.2 does not support references in policy. Therefore, we have extended
this implementation accordingly to actually support policy references.

Policy Enforcement. The policy enforcement component assures that all security
relevant tasks can only be fulfilled if they are in accordance with the underly-
ing security policy. The policy enforcement component detects security relevant
tasks, consults the policy decision component in order to decide upon a task, and
enforces the policy decisions, i. e. allows a platform entity to access a platform
resource or not.

SicAri Services. Interaction between applications and services and between one
service and another as well as access of local resources within services is implicitly
controlled by the policy enforcement component. Except the situation that a ser-
vice wants to explicitly request the policy decision component, policy processing
is done transparently during service execution. That is, SicAri services do not
have to be aware of the existence of a security policy. As consequence, there is no
need to modify or adapt existing or upcoming services to be compatible with the
policy integration concept. The only thing that needs to be done by a security
administrator is to configure resp. re-generate the security policy according to the
security requirements in the context of new services integrated into the service
infrastructure.

Platform Authentication. Finally and as another precondition for policy en-
forcement e. g. by means of access authorization, every acting entity in the service
infrastructure has to be successfully authenticated. Thus, several authentication
modules are provided locally on a platform instance to allow different user lo-
gin procedures according to the specific use case and characteristic of the local
platform instance.

4 Policy Distribution with COPS and XACML

This sections takes on the policy distribution issue from the introduction. The
protocol framework for Policy Based Network Management (PBN) which has been
defined by the IETF Resource Allocation Protocol (RAP) work group offers a good
solution to those questions.

4.1 Policy Distribution with COPS

The core of the RAP framework is the COPS [6] protocol. It provides a means
to communicate policies and policy decisions in a distributed system. The main

8



Peters, et al

characteristics are
(i) the logical and architectural separation of policy enforcement and policy de-

cision components, (ii) a client/server model of PEP and PDP, (iii) reliable trans-
port of messages between PEP and PDP via TCP, (iv) a flexible and extensible
framework through self-identifying objects that allow to define arbitrary protocol
payload, and (v) a stateful communication between PEP and PDP which share re-
quest/decision states that allow the PDP to asynchronously update decisions and
configuration information at the PEP.

COPS is designed to be used in two basic scenarios – outsourcing and configura-
tion. In the configuration scenario a local Policy Decision Point (LPDP) is available
and in the outsourcing scenario there is none. In the first case the PEP asks the
LPDP for local policy decisions and in the latter case the PEP delegates all policy
decisions to the remote PDP. Since the configuration scenario has already been im-
plemented in SicAri its concept is described in more detail in the next paragraph.
Section 4.2 explains how both scenarios integrate into the platform architecture.

COPS in Configuration Mode
In configuration mode the PEP requisitions a whole configuration for a compo-

nent. Because COPS is policy independent the configured component can be such
different things as router hardware or Web services.

SicAri-Service PEP PDP

init

OPN

CAT

REQ

DEC

DEC

RPT

RPT

REQ

DEC

RPT

done

KA

KA

msc Configuration

Fig. 4. Configuration request

Figure 4 shows the schematic sequence of the COPS configuration procedure
in form of a Message Sequence Chart (MSC). When a service is started for the
first time it contacts the PEP. The PEP sends a client open message (OPN) to the
corresponding PDP. This message contains a unique ID that identifies the PEP to
the PDP and it also contains a client specific information (ClientSI) object. This
object is necessary to enable the PDP to relay the OPN message to a PDP module
that can handle the requests for the incoming type of policy.

When the PDP is capable to serve the client type it answers with a client accept
(CAT) message and expects incoming requests. In the configuration scenario the
PEP sends one or more request messages (REQ) that contain context objects which
identify the message as configuration requests. The request messages also comprise

9



Peters, et al

ClientSI objects that carry client specific information on the requested configuration
data.

Each configuration request may be answered with a single decision message (DEC)
or a stream thereof. On reception and successful installation of the configuration
data the PEP acknowledges this to the PDP with a report state message (RPT) for
each of the DEC messages. When the PEP finally has received all configuration data
from the PDP it signals the installation back to the SicAri service which now can
rely on the LPDP to decide access requests.

From now on the PDP proactively keeps the policy at the PEP side up to date.
Whenever a change to the master policy at the PDP side is made, it passes it on
to all PEPs that make use of this policy. For that purpose both parties regularly
exchange keep alive (KA) messages to assure that the PEP always uses a policy that
is up to date

4.2 Platform Integration

This section describes how the two policy distribution approaches can be integrated
into the platform architecture.

In contrast to the COPS specification, the definition of PEP and LPDP in
SicAri are slightly different: Whereas the PEP in COPS is defined as a local client
component communicating with a global PDP, in the COPS policy configuration
scenario this component corresponds best to the LPDP, as defined in SicAri (cf.
Figure 4 vs. Figure 5 (a)).

COPS Policy Configuration
The main characteristics of this scenario are the local PEP and LPDP (cf. Fig-

ure 5 (a)). The PEP interacts with the local policy service, which mainly consists of
the following components: LPDP, cached policy, and COPS adapter. The LPDP is
responsible for making policy decisions based on the input from the SicAri security
manager (PEP) and a locally cached version of the master security policy. The
LPDP is realized by an extended version of Sun’s XACML reference implementa-
tion (see below). The PEP uses the Java-API of Sun’s XACML engine in order to
communicate with the LPDP. A (potentially remote) policy provisioning component
provides a copy of the latest master policy to the LPDP using the COPS protocol.

COPS Policy Outsourcing
The main characteristic of the second scenario is that a local PEP delegates all

policy decisions to a remote PDP. This scenario is not yet implemented.
The policy service mainly consists of a COPS adapter which transforms the

policy decision request of the PEP into an XACML policy request. The COPS
adapter sends this request to the remote PDP which is responsible for providing the
policy decision based on the master security policy. The XACML policy decision
response is sent back from the remote PDP via COPS to the local PEP which
enforces the policy decision.

10



Peters, et al

SicAri

Security Manager


(PEP)


Policy Service


Sun XACML Engine

(LPDP)


COPS-Adapter


Master

Policy


Cached

Policy


COPS-Adapter


SicAri

Service


SicAri

Security Context


PEP with LPDP


XACML over COPS


PDP


(a) Configuration Scenario

SicAri

Security Manager


Policy Service


COPS-Adapter


Master

Policy


COPS-Adapter


SicAri

Service


SicAri

Security Context


PEP


XACML over COPS


PDP


Sun XACML Engine


(b) Outsourcing Scenario

Fig. 5. Policy provisioning

4.3 XACML over COPS

We extended the COPS framework with an XACML client type. All COPS messages
start with a common header that determines the message type and the payload type.
Figure 6 shows the schema of this header whose relevant fields are described below.

Version Flags Op Code Client Type

Message Length

0 1 2 3

Fig. 6. Common COPS header

The Op Code indicates the type of the message, e. g. REQ or KA. The Client Type
field provides a code that uniquely identifies the payload carried in the message. For
example client-type number 1 is a published Internet Assigned Numbers Authority

(IANA) number assigned to RSVP policy data [10].
Each COPS message may consist of different COPS objects. The message con-

tent is wrapped with the help of 16 different predefined COPS objects. Some of
these objects provide fields to carry client-type specific data.

The most important object is the afore mentioned ClientSI object that has
variable length and transports the client-type data. Figure 7 depicts the generic
COPS object structure. Depending on the type of COPS message that is signaled
zero, one or more COPS objects may follow the COPS header.

The C-Num and C-Type fields determine the class and the characteristics of the
object. For ClientSI objects the C-Num field is 9 and the variable length field for

11



Peters, et al

0 1 2 3

Length (octets) C−TypeC−Num

Object contents

Fig. 7. Generic COPS object

the object content carries the policy data. This data has to be processed by special
COPS modules that can interpret the corresponding client type specific information.
Our implementation bases on an open source implementation of the COPS protocol
from the University of Waterloo [1,3]. We extended their PBN code with several
classes to multiplex incoming COPS messages at the PDP to modules which handle
client-specific content like XACML.

4.4 XACML Client Type for the COPS Protocol

As the next step a concept to extend the COPS protocol to transport XACML
polices as payload has been developed. For any extension to the COPS protocol
one has to take the peculiarity of the target policy language into account. The
structure of the client-type specific objects and the protocol extensions should be
specified in a supplementary document that defines how the PEP and the PDP
interpret and handle the policy specific payload.

Any XACML policy document is structured according to the respectively ef-
fective XACML schema. The XACML data flow model defines that a Policy Ad-

ministration Point (PAP) provides the PDP with XACML documents that contain
sets of policy and policyset elements. It is specified in the XACML schema that
policy and policyset elements can be nested inside a policyset. The distribu-
tion of XACML client-type data in the configuration mode will base on this tree
structure of XACML documents. Any leaf and any node of such a document will be
encapsulated in a single COPS object and send alone or in a group in a decision
message from the PDP to PEP. Our concept considers the policy and policyset
elements as such leaf and node objects since they define logical building blocks of
a policy. The PEP acknowledges any such COPS message with XACML content
with a COPS report message. On COPS’ PEP side the policy and policyset
building blocks are assembled back into a copy of the XACML master policy which
is passed on to the LPDP as defined in SicAri.

The XML structure provides another advantage with respect to the proactive
update and delete mechanism of COPS PDPs. A PDP can address any policy
element in the XACML document using XPATH. Any administrative task mod-
ifying the master policy triggers a COPS message for the corresponding policy
and policyset element that has been changed. This COPS message will transport
one or more COPS decision objects containing replacement data that uniquely
identifies the processed policy elements using XPATH objects. This way the PDP
can generate fine-granular updates at the XML element level. The COPS protocol
assures that both, PEP and PDP, always work on the same XACML document.
Any policy document is definitely identified by the TCP connection between PEP
and PDP together with the client handle that the PEP uniquely assigns to each
request that it sends out.

12



Peters, et al

5 Related Work

In [18], Ponnappan et al. describe a policy based QoS management system for
IntServ/DiffServ networks. This design uses COPS for interfacing with the network
devices and CORBA as middleware for component interaction.

An approach presented in [21] by Toktar et al. proposes an XACML-based
framework for distributing and enforcing access control policies to RSVP-aware ap-
plication servers. Access control policies are represented in an extension of XACML
(based on Sun XACML) which is an alternative to the IETF Policy Core Infor-
mation Model (PCIM) [11] based approach. The authors use COPS in outsorcing
mode to distribute policy requests and decisions between the policy server and the
RSVP server that is responsible to enforce the QoS measures.

In his dissertation [17], K. Phanse proposes a management framework for policy
based ad hoc network management. He builds on a distributed, hybrid architecture
that combines the outsourcing and provisioning models of COPS and COPS-PR to
provide an efficient and flexible solution for policy distribution in wireless ad hoc
networks. To translate the policy specification into device-specific configuration,
the management framework must be aware of the various resources available in the
system. Policy provisioning occurs after policies are distributed, and consists of
installing and implementing the policies using device specific mechanisms.

Since COPS seems to be the only open service for policy distribution of notable
propagation we find it hard to compare our approach to others. While it is difficult
to make a quantitative statement on the efficiency to transport XACML policies
via COPS it is easier to give a qualitative predication. COPS realizes some design
aspects that improve efficient distribution and maintenance of distributed policies.
After provisioning the initial policy in configuration mode to the LPDPs the central
PDP keeps them up-to-date with unsolicited decision messages whenever some part
of the policy changes. Since COPS allows to transport policy parts of arbitrary size
it is up to the developer of the payload extension to optimize the communication
overhead. COPS only demands that the transported pieces are uniquely address-
able. This perfectly fits to XACML because XPATH and unique element identifiers
allow to address and transport only those pieces of the master policy that have
really changed. Furthermore, COPS in configuration mode promises to economi-
cally use network resources because access control policies are not very likely to be
changed frequently. This enables the administrator to choose a higher value for the
KA timeout thus reducing the communication overhead when there are no updates.
The only drawback lurks in the fact that XACML is an XML-based language which
are inherently wordy.

6 Outlook

It is planned to implement the mechanism to encapsulate XACML payload in COPS
messages as described in Section 4.4. The open source JDOM (http://www.jdom.
org/) package for parsing and representing XACML documents as objects seems a
viable basis to build a solution upon.

We will furthermore develop a concept to use the policy administration, policy

13



Peters, et al

validation, and policy provisioning mechanisms implemented in the platform, to
manage other policy domains such as network security policies (e. g. to configure
external PEPs such as firewalls).

An additional research aspect with respect to a holistic policy approach in dis-
tributed environments will be policy negotiation in case services from two different
security domains, enforcing security upon two different security policies, have to
interact with each other.

Acknowledgement

This paper was written while the authors were working within SicAri, a project
funded by the German Ministry of Education and Research

References

[1] R. Boutaba, A. Polyrakis, and A. Fernandez Casani. Active Networks as a Developing and Testing
Environment for Networks Protocols. In Annals of Telecommunications, volume 59, pages 495–514,
2004.

[2] Jery Bryans. Reasoning about XACML policies using CSP. In SWS ’05: Proceedings of the 2005
workshop on Secure web services, pages 28–35, New York, NY, USA, 2005. ACM Press.

[3] Alvaro Fernandez Casani. Implementation of a Policy Based Network Framework using Metapolicies,
December 2001.

[4] SicAri Consortium. SicAri – A security architecture and its tools for ubiquitous Internet usage, October
2003. URL: http://www.sicari.de/.

[5] World Wide Web Consortium. OWL Web Ontology Language – Overview, February 2004. URL: http:
//www.w3.org/TR/owl-features/.

[6] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry. The COPS (Common Open Policy
Service) Protocol. RFC 2748 (Proposed Standard), January 2000. Updated by RFC 4261.

[7] David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-Based Access Control.
Computer Security Series. Artech House, Boston, 2003.

[8] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and Michael Carl Tschantz. Verification and
change-impact analysis of access-control policies. In ICSE ’05: Proceedings of the 27th international
conference on Software engineering, pages 196–205, New York, NY, USA, 2005. ACM Press.

[9] Li Gong. JavaTM 2 Platform Security Architecture, Version 1.2. Sun Microsystems Inc., 2002.

[10] S. Herzog, J. Boyle, R. Cohen, D. Durham, R. Rajan, and A. Sastry. COPS usage for RSVP. RFC
2749 (Proposed Standard), January 2000.

[11] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen. Policy Core Information Model, Version 1,
February 2001.

[12] Tim Moses. eXtensible Access Control Markup Language (XACML), Version 2.0. Technical report,
OASIS Standard, 2005.

[13] National Institute of Standards and Technology (NIST). Role-Based Access Control. URL: http:
//csrc.nist.gov/rbac/.

[14] OASIS Open. Core and Hierarchical Role Based Access Control (RBAC) Profile of XACML v2.0,
February 2005. URL: http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rba%
c-profile1-spec-os.pdf.

[15] P. Ochsenschläger, J. Repp, and R. Rieke. The SH-Verification Tool. In Proc. 13th International
Florida Artificial Intelligence Research Society Conference (FLAIRS-2000), pages 18–22, Orlando,
FL, USA, May 2000. AAAI Press. ISBN: 0-1-57735-113-4.

[16] P. Ochsenschläger, J. Repp, R. Rieke, and U. Nitsche. The SH-Verification Tool – Abstraction-Based
Verification of Co-operating Systems. Formal Aspects of Computing, The International Journal of
Formal Method, 11:1–24, 1999.

14



Peters, et al

[17] Kaustubh S. Phanse. Policy-Based Quality of Service Management in Wireless Ad Hoc Networks.
Dissertation, Virginia Polytechnic Institute and State University, August 2003.

[18] A. Ponnappan, L. Yang, R. Pillai, and P. Braun. A Policy Based QoS Management System for the
IntServ/DiffServ Based Internet. In Proc. of the IEEE 3th International Workshop on Policies for
Distributed Systems and Networks (POLICY 2002), page 159ff, Los Alamitos, CA, USA, 2002. IEEE
Computer Society.

[19] Ravi Sandhu. Role activation hierarchies. In Proceedings of the third ACM workshop on Role-based
access control. ACM Press, 1998.

[20] Sun Microsystems, Inc. Sun’s XACML Implementation, Version 1.2. URL: http://sunxacml.
sourceforge.net/.

[21] Emir Toktar, Edgard Jamhour, and Carlos Maziero. RSVP Policy Control using XACML. In Proc.
of the IEEE 5th International Workshop on Policies for Distributed Systems and Networks (POLICY
2004), page 87ff, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

15


	Introduction
	The SicAri Platform
	Platform Architecture
	Platform Components

	Holistic Approach to Security Policies
	Policy Architecture

	Policy Distribution with COPS and XACML
	Policy Distribution with COPS
	Platform Integration
	XACML over COPS
	XACML Client Type for the COPS Protocol

	Related Work
	Outlook
	Acknowledgement 
	References

