
SicAri – A security architecture and its tools for
ubiquitous Internet usage

Version 0.9, 22.02.2006
Deliverable PF5

Enforcement of Security Policies
within the SicAri-Platform
Andreas Heinemann, TUD-TK
Jan Oetting, usd.de

Jan Peters, Fraunhofer IGD
Roland Rieke, Fraunhofer SIT

Taufiq Rochaeli, TUD-SEC
Markus Ruppert, Flexsecure

Björn Steinemann, Fraunhofer SIT
Ruben Wolf, Fraunhofer SIT

Copyright c© 2006 SicAri Consortium

Document Information

Corresponding document version on CVS:
$Id: pf5-policies.tex,v 1.16 2006/02/22 11:44:06 rwolf Exp $

Author of this version:
$Author: rwolf $

Date of this version:
$Date: 2006/02/22 11:44:06 $

$Log: pf5-policies.tex,v $
Revision 1.16 2006/02/22 11:44:06 rwolf
Added outlook about meta policies.

Revision 1.15 2006/02/22 10:42:52 steinema
Extracted section Policy Decision in separate file

Revision 1.14 2006/02/15 18:02:42 jpeters
figures added

Revision 1.13 2006/02/15 17:51:04 jpeters
section ’SicAri Identification Management’ added

Revision 1.12 2006/02/15 08:58:10 rol
Umlaute ersetzt

Revision 1.11 2006/02/14 16:20:24 jpeters
Editorial work: unified handling of acronyms; spelling corrected

2

Contents

1 Introduction 4

2 Architecture Specification Version 2 4

3 SicAri Identity Management 6

3.1 Identity Administration . 7

3.2 Identity Manager . 9

4 Authentication of Platform Entities 10

5 Security Policy Integration Concept 11

5.1 Policy-related Components of the SicAri Platform 11

5.2 Bootstrapping . 13

6 Policy Enforcement 13

7 Policy Decision 13

7.1 Policy Decision Scenario 1 . 13

7.2 Policy Decision Outsourcing Scenario . 13

7.3 Transport of Policy Decisions with COPS . 14

7.4 Using Sun XACML Implementation to Evaluate RBAC Profile of XACML . . 16

8 Policy Provisioning 17

8.1 COPS in configuration mode . 18

8.2 XACML over COPS . 19

9 Policy Generation 20

10 Outlook 20

A Glossary 23

3

1 Introduction

The specification of the SicAri platform as described in Deliverable PF3 – Specification of the
SicAri Architecture [12] already introduced a few security providing components. This docu-
ment will provide SicAri’s security policy integration concept. It will describe the components
of the SicAri policy framework and their interactions in order to guarantee that all security
relevant processes in the platform are fulfilled according to the underlying security policy.

Our security policy integration concept is based on the manifold requirements with respect to
policies as described in Deliverables Pol1 – Requirements on SicAri Security Policies [16] and
PF2 – Requirements for the SicAri Architecture [13]. Selected requirements are for example

• Control of all security related processes and tasks. Impossibility to bypass the policy
enforcement component.

• Compatibility of the policy framework with the SicAri platform’s plug-in approach. No
need to change existing or upcoming services in order to enforce the platform’s security
policy. Transparency of policy control.

• Consideration of trade-off between expressiveness and complexity of the policy descrip-
tion language.

• Support for platform administrators during policy management.

Taking these requirements into account, we developed a policy framework for the SicAri plat-
form.

The remainder of this document is structured as follows: Section 2 lists some aspects of the
platform specification that need to be adapted in order to integrate security policies. Sections 3
and 4 cover identity management and authentication aspects. The components of the policy
framework are outlined in Section 5, while Sections 6 to 9 describe particular aspects of the
policy framework, such as policy enforcement, decision, provisioning, and generation. Finally,
Section 10 gives a summary and an outlook.

2 Architecture Specification Version 2

This section describes changes and adjustments of SicAri’s platform architecture specification
as described in Deliverable PF3 – Specification of the SicAri Architecture [12] that have been
necessary in order to integrate new functionality such as security policies into the platform. The
references given in the description below refer to the respective sections and pages in Deliverable
PF3. Specific parts of Deliverable PF3 are refined or completely replaced by this document, the
relevant parts are denoted in the description below.

Section 4.2 – SicAri Kernel: Each entity working with the SicAri platform needs to be authen-
ticated before starting operation. A proved identity is the basis for all further processes of
an entity; in particular, access control decisions are made on the basis of a proved iden-
tity. Authentication is implemented by a Platform Authentication Service, which uses the
platforms Identity Manager to verify the entity’s credentials. Details about the various
authentication mechanisms are given in Section 4 of this documents.

4

Section 4.2.2 – Environment: There is an additional proxy, the Security Proxy, which is re-
sponsible for automatic and transparent enforcement of the security policy. Details about
the new Security Proxy are given in Section 6 of this document.

Section 4.2.3 – Security Context: The cooperation between the Security Proxy, the SicAri Se-
curity Manager and the Security Context is illustrated in Section 6 of this document.

Figure 5 on Page 17: As a start, the Context Manager will be replaced by a Context Database
whose application is optional and required only for a very special type of security policies
(such as the specification of history based access permissions). Likewise, the automatic
Feedback Module is skipped in the current version of the platform architecture.

Figure 6 on Page 18: Policy Query and Policy Provisioning are realised using the Common
Open Policy Service (COPS) Protocol. Details about policy provisioning are given in
Section 8 of this document. Policy Specification uses the policy description language
XACML. An outline of the policy generation process is given in Section 9 of this docu-
ment. The full description can be found in Deliverable Pol4 [17].

Section 4.3.3 – Role-Based Access Control: As a start, the platform uses a simple role activa-
tion algorithm, since there is currently no need to activate and deactivate roles during a
session. The algorithm may change if new requirements for security policies arise. In the
current version of the role activation algorithm is as follows: All roles that a user may
potentially have are activated at the time of the users login.

The least privilege principle and separation of duty concepts cannot the realised in the
current version of the platform, since the actual version of XACML’s role-based profile
doesn’t support it.

Section 4.3.4 – Context-dependent Access Control: The current version of the platform will
only consider static context information within the access control decision. Sensors are
currently not supported.

Figure 9 on Page 22: The Reference Monitor is realised by the Security Proxy (as a trigger for
the subsequent policy enforcement). Details about the policy enforcement approach are
given in Section 6 of this document.

Section 5.1 – Policy Enforcement ans Security Manager: The paragraph about the Context
Manager on page 26 is obsolete.

Use Case “Access Control Enforcement”: The user’s identity in step 4 is part of the Se-
curity Context and doesn’t need to be retrieved from the Identity Manager.

Figure 12 on Page 28: Context Manager is obsolete. The chain of execution is as follows:
Service→ Security Proxy→ Security Manager→ Policy Service (incl. Policy Decision
component).

Section 5.3 – Security Provisioning: The current platform architecture is restricted to the en-
forcement of access control policies. There is no enforcement for security mechanisms.

Section 5.4 – Context Manager: This section is obsolete.

Section 5.5 – Authentication Manager: The platform supports various authentication meth-
ods such as username and password, or certificate-based authentication. Details about the

5

responsibilities of the Authentication Manager and its relations to the Identity Manager
are given in Section 4 of this document.

Section 5.6 – Identity Manager: The responsibilities of the Identity Manager and its interac-
tion with the Out-Of-The-Box-PKI (OOTB-PKI) are described in Sections 3 and 4 of this
document.

Section 5.8 – Persistency Service: It turned out to be that the current platform architecture
doesn’t require a generic persistency component.

Section 6.1 – Sensor Modules: Due to the reduced functionality of the context component,
there is no need for sensor modules.

Section 6.2 – Cryptographic Primitives: All new cryptographic primitives will be integrated
using Java’s crypto provider approach.

Section 6.3 – Communication Protocols: Various protocols (such as LDAP, SSL, COPS) have
already been integrated.

Section 7 – Logical View: Since the SicAri prototype improves and evolves continually, the
class diagrams may also be a target for changes.

Section 7.2.1 – Scenario: Check Permission and Sequence Diagram in Figure 30: Due to mi-
nor reorganisation and renaming of components the scenario and the illustrating sequence
diagram will marginally change. The updated illustration will be given in Section 6 of
this document.

Section 8 – Deployment View: Access to remote SicAri services is realised by the platform’s
web service framework which allows transparent access to locally available or remote
SicAri services.

Details about integration of security policies into the SicAri platform and the interactions with
identity management and authentication components are given in the subsequent sections.

3 SicAri Identity Management

Identity management comprises the administration of identities within a defined SicAri in-
frastructure as well as the provision of the Identity Manager service, which can be used during
runtime by other services and applications on platform instances. Figure 1 depicts the different
components involved.

6

SicAri Platform Instances
SicAri Platform Instances

Identity
Database

Identity
Administration

Identity
Manager

Key
Master

R
e

q
u

e
st

e
d

In
fo

rm
at

io
n

S
m

a
rt

 C
a

rd
 /

S
o

ft
T

o
ke

n

Figure 1: Components of the SicAri Platform for Identity Manangement

3.1 Identity Administration

Identity management in SicAri includes the administration of identities within a defined SicAri
infrastructure. That is the registration of new identities (rollout), the modification of identity
attributes as well as the revocation of identities. Identities and corresponding attributes are ad-
ministrated globally and stored in the identity database within the SicAri infrastructure. It is
planned to use well tested modules of the Flexi-PKI [5] to fullfill these administration processes
including the generation of cryptographic key material and rollout of smartcards as security to-
kens. Since the results of the different processes are mapped into a LDAP database, this LDAP
database is used during runtime as identity database within SicAri. Furthermore, the generated
cryptographic keys and personalized smartcards conform to security standards. With this ap-
proach it is assured that the administration processes can easily be exchanged as long as the
results conform to the same LDAP schema.

The following three types of identities will be provided in SicAri, whereas they only differ in
the semantic meaning and the associated attributes. Syntactically all identities are stored within
the same database using the same representation schema. Furthermore, user is used as synonym
for identity throughout this document.

Platform administrators Every platform instance in the SicAri infrastructure is started by the
associated platform administrator. The cryptographic keys of the platform administrator
are used to unequivocally identify the platform instances during inter-platform communi-
cation processes. Thereby, mapping between platforms instance and platform administra-
tors has to be one-to-one.

Service users To narrow down the set of permissions granted to basic services (cf. Section 6),
these services are not initiated by the platform administrator itself during the bootstrap-

7

ping process of a platform instance, but by a correspondig service user. Thus, a service
user is defined for a specific type of service and a well defined set of permissions is as-
sociated with this identity resp. with a specific role which is in turn associated with this
identity. To support single-sign-own mechanisms a platform administrators is allowed to
impersonate a set of service users without another authentication (cf. Section 4).

Regular users In general a regular user in SicAri corresponds to real person, who interacts
with services of the SicAri infrastructure through local platform instances. Depending on
the set of permissions granted to this user, he is either restricted to the use of the given
service infrastructure, or allowed to administrate basic or application services provided.

One part of the user rollout is the generation and storage of cryptographic keys and correspond-
ing certificates for authentication, digital signatures, and data encryption. In case of platform
administrators, these keys are provided as soft tokens, i.e. a password-protected keystore file
which is usually stored on the platform host. Furthermore, it is recommended to generate cryp-
tographic keys for regular users. These keys are either stored on a personalized smart card or
provided as soft token. In either case, a password has to be associated with regular users, which
is used as fallback for authentication (cf. Section 4). Since a service user is an abstract identity,
no cryptographic keys are associated with this user type. All certificates additionally stored in
the identity database.

As mentioned above the identity database maps identities to a certain set of attributes. The
following list comprises oblicatory identity attributes in SicAri, whereas this list can be extended
depending on the current needs of provided services:

dname The distinguished name [9] unequivocally identifies the user in a hierarchical namespace.
Furthermore, this distinguished name is used to identify a leaf in a LDAP database, and
is embedded in the subject and issuer field of a X509 [10] certificate.

userid Another unequivocal identification of a user in the SicAri infrastructure (usually a short
human readable name).

email The email adress of the user, used to send personal messages (in case of a regular user)
or status information (in case of a platform administrator). As the dname or userid this
attribute is globally unique within the SicAri infrastructure.

password The password hash which can be used together with the userid for user authentica-
tion.

certificate Up to three X509 certificates for authentication, signature, and encryption.

serialnumber Up to three serial numbers of the corresponding X509 certificates

In table 1 the mapping between SicAri user attributes and the attributes of the defined LDAP
schema is given. The table contains further optional attributes which are conceivable in typical
application scenarios.

The distinction of the three user types should rather be done by choosing the hierarchy layout
(i.e. the structure of the distinguished name) than by defining additional attributes. Examples
for distinguished names are shown in table 2.

8

SicAri user attribute LDAP attribute must/optional
dname dn must
userid uid must
title title optional
fullname cn optional
givenname givenname optional
surname surname optional
street postaladdress optional
postalcode postalcode optional
city l optional
country c optional
telefon telephonenumber optional
fax faxsimiletelephonenumber optional
mobile moible optional
email mail must
department departmentnumber optional
building buildingname optional
room rommnumber optional
photo jpegphoto optional
birthday - optional
password userpassword must
biofinger biofinger optional
certificate usercertificate must
serialnumber serialnumber must

Table 1: Mapping between SicAri Attributes and LDAP Attributes

3.2 Identity Manager

In contrast to identity administration as described above, the identity manager service does not
modify the identity database. Its task is the provision of identity information to other services
and applications. Thus, the identity manager is installed on each platform instance as basic
service, which subsequently accesses the global identity database upon request.

The tasks of the identity manager service can be subdivided into:

search for identities Search for identities based on given user attributes: A set of userids is
returned as globally unique identifiers for matching user records in the identity database.

mapping of identity representations Map the three globally unique user attributes dname,
userid, and email into each other.

request of identity attributes Request user attributes corresponding to a given userid as
unique user identifier.

As certificates are defined user attributes, these can be requested through the identity manager
service. Thus, public keys to verify authentication credentials, encrypt data, or validate digital
signatures of a specific user are available. As the name implies, the private key of a user’s

9

Plattform administrator: emailaddress=platform1@sicari.de,
cn=platform1.sicari.de,
ou=Administrators,
o=SicAri,
dc=sicari,dc=de

Service user: cn=Database Service,
ou=Services,
o=SicAri,
dc=sicari,dc=de

Regular user: emailaddress=jan.peters@sicari.de,
cn=Jan Peters,
ou=Users,
o=SicAri,
dc=sicari,dc=de

Table 2: Example Distinguished Names for the three User Types

cryptographic key pair should never be revealed to the public, it is stored in the password-
protected soft token or the cryptographic smart card.

To enable the basic cryptographic mechanisms user authentication, signature generation, and
data decryption another service – the key master service (cf. Figure 1) – is provided on each
platform instance. In case of a soft token, the private keys are temporarily loaded into memory
to execute the cryptographic operation. Although the private key never leaves the local platform,
the user has to trust the local platform instance, that is the local platform administrator. In SicAri,
the smart card provides the highest level of security with respect to exposure of a user’s private
keys, as the private key never leaves the smart card. In this case, the key master returns the
PKCS11 [18] provider as wrapper to cryptographic operations executed directly on the user’s
smart card. Furthermore, these operations must be approved by the user, which has to enter the
smart card’s PIN code on the card terminal everytime such an operation is performed. Since
many users can concurrently use a local platform instance, the key master manages access to
private keys – directly or through the smart card – for all users currently logged in. Thereby,
access to keys is only granted to the corresponding user and as stated above to the platform
instance itself.

Another functionality of the key master is the provision of a set of trusted certificates stored
in the soft token of the platform administrator. These certificates – in particular the certificate
of the root certificate authority (Root-CA) of the SicAri infrastructure – are used to validate
certificate chains in the context of user authentication.

4 Authentication of Platform Entities

This section will be provided in the next version of this document.

10

5 Security Policy Integration Concept

5.1 Policy-related Components of the SicAri Platform

The policy integration concept of the SicAri platform requires the interaction of various compo-
nents of the SicAri platform (see Figure 2). This section gives an overview of all the components
involved and their interactions with other components. After a short outline of each component
below, we will provide details about selected aspects in the Sections 6 to 9.

SicAri Applications

Platform
Authentication

Policy
Enforcement

SicAri
Services

Policy
Generation

Policy
Decision

Policy
Validation

Policy
Provisioning

Policy
Administration

Security
Policy

Figure 2: Policy Components of the SicAri Platform

SicAri Applications and SicAri Services. SicAri applications are located on the top of the
SicAri platform. They interact with users of the SicAri platform on the one hand, and with
SicAri services in order to provide their services on the other hand.

The SicAri platform hosts two kinds of services: basic services and application services (cf.
Deliverable PF3 – Specification of the SicAri Architecture [12]). Both kinds of services are
controlled by the platform’s security policy enforcement components (see below).

The policy processing is mostly transparent. That is, SicAri services are not aware of the exis-
tence of the security policy. Therefore, there is no need to modify and adapt existing or upcom-
ing services to be compatible with policy integration concept. From the time when a service is

11

registered in the SicAri platform as a SicAri service, it is controlled by SicAri’s policy frame-
work. The only thing that needs to be done is to configure the security policy for the new service.
After that, the policy is enforced automatically.

Platform Authentication. There is a clear separation in the SicAri platform between authen-
tication of platform entities and access authorization of platform entities to platform resources.
Authentication provides a basis for subsequent access control decisions. As described in Sec-
tion 4, the SicAri platform provides various authentication mechanisms.

Policy Enforcement assures that all security relevant tasks can only be fulfilled if they are
in accordance with the underlying security policy. The policy enforcement component detects
security relevant tasks, consults the policy decision component in order to decide upon a task,
and enforces the policy decisions, i.e. allows a platform entity to access a platform resource or
not. Details of the policy enforcement component are described in Section 6.

Policy Provisioning covers the distribution of policies, policy updates, policy decision re-
quests and responses. Details about this component are given in Section 8.

Policy Decision. The platform supports two different usage scenarios for policy decision, that
can be selected depending on the actual deployment infrastructure of the platform. Both scenar-
ios are illustrated in Section 7.

Security Policy and Policy Generation. SicAri uses the widely spread standard Extensible
Access Control Markup Language (XACML) as policy description language. The policy itself
is generated using so called policy patterns that allow to specify template policies archetypes
for recurring areas of application. A summary of policy patterns and the policy generation
component is given in Section 9, a detailed specification can be found in Deliverables Pol3 –
Policy Patterns and Its Application [15] and Pol4 – Policy Generator [17].

Policy Validation. The specification of the security goals does not necessary correspond with
its implementation or realisation as specified in the security policy specification (e.g. the XACML
policy file). In most cases security policies are administrated manually, that is mistakes may
arise. It is necessary to evaluate, whether the security target set is actually implemented in the
security policy specification. The SicAri platform provides a component that allows specifi-
cation of security goals and checking whether they are met or not. Details can be found in
Deliverable PE5 – Evaluierung von Sicherheitszielen auf Basis von Policies [14].

Policy Administration. Even if the SicAri platform provides the ability of automated security
policy generation, there may be the need of fine granular policy administration, e.g. a new user
needs to be added, or the permissions of a user or role need to be changed. For that, the SicAri
platform will provide an administration API and a corresponding graphical user interface. This
is the objective of upcoming Deliverable PF8.

12

5.2 Bootstrapping

This section will be provided in the next version of this document.

6 Policy Enforcement

This section will be provided in the next version of this document.

7 Policy Decision

After Section 6 focused on policy enforcement, this section covers how policy decisions are
made within the SicAri platform. In principle, there are two different usage scenarios for policy
decisions: (1) local and (2) remote policy decisions.

7.1 Policy Decision Scenario 1

The main characteristics of this scenario are the local Policy Enforcement Point (PEP) and the
Local Policy Decision Point (LPDP). The scenario is depicted in Figure 3.

The PEP interacts with the local policy service, which mainly consists of the following com-
ponents: LPDP, cached policy, and COPS adapter. The LPDP is responsible for making policy
decisions based on the input from the SicAri security manager and a locally cached version of
the master security policy. The LPDP is realised by an extended version of Sun’s XACML refer-
ence implementation (see below). The PEP uses the Java-API of Sun’s XACML engine in order
to communicate with the LPDP. A (potentially remote) policy provisioning component provides
a copy of the latest master policy to the PEP-LPDP component using the Common Open Policy
Service (COPS) protocol. The policy itself is specified using the XACML policy description
language.

This is the favoured policy decision usage scenario for the SicAri platform. However, there is
an alternate policy decision approach.

7.2 Policy Decision Outsourcing Scenario

The main characteristic of the second scenario is that a local PEP requests a policy decision
from a remote Policy Decision Point (PDP).

Here, the policy service mainly consists of a COPS adapter which transforms the policy decision
request of the SicAri security manager into an XACML policy request. The COPS adapter sends
this request to the remote PDP which is responsible for providing the policy decision based on
the master security policy. The XACML policy decision response is sent back from the remote
PDP via COPS to the local PEP which enforces the policy decision.

As in scenario 1, policy decisions are made by an extended version of Sun’s XACML reference
implementation. In this scenario, there is no locally cached version of the security policy. How-
ever, an enhanced version of the SicAri architecture may have the ability to cache prior policy
decisions. In contrast to scenario 1, in which the whole XACML security policy is transferred
using the COPS protocol, scenario 2 only transfers XACML requests and responses over COPS.

13

SicAri
Security Manager

(PEP)

Policy Service

Sun XACML Engine
(LPDP)

COPS-Adapter

Master
Policy

Cached
Policy

COPS-Adapter

SicAri
Service

SicAri
Security Context

PEP with LPDP

XACML over COPS

Policy
Provisioning

Figure 3: Policy Decision – Usage Scenario 1

7.3 Transport of Policy Decisions with COPS

Figure 4 gives an overview of the interplay between the different components in SicAri that
execute policy requests and decisions. In this section we focus on the role that the COPS adapter
components play in this process.

The SicAri COPS extensions are build on the COPS implementation from the Network and
Systems Management group of the University of Waterloo. This software is written in Java and
published under the terms of the GNU General Public License.

14

SicAri
Security Manager

Policy Service

COPS-Adapter

Master
Policy

COPS-Adapter

SicAri
Service

SicAri
Security Context

PEP

XACML over COPS

PDP

Sun XACML Engine

Figure 4: Policy Decision – Usage Scenario 2

15

7.4 Using Sun XACML Implementation to Evaluate RBAC Profile of XACML

Sun’s XACML implementation [1] is an open source reference implementation of a XACML
evaluator. It comprises of library classes which could be used in building Policy Enforcement
Point or Policy Decision Point [?]. Currently, Sun’s XACML implemention (Version 1.2) sup-
ports the complete mandatory specification of XACML 2.0 enriched with a number of optional
features.

One of the main benefits of Sun’s XACML implementation is the modular architecture, which
allows the extension of the implementation. This ranges from adding new attribute types, which
are user defined data types in XACML, to adding new finder modules, which search the policies
according to the user’s search criteria.

Our interest lies in using Sun’s XACML implementation as a XACML policy evaluator, which
is specified in RBAC profile 2.0. This is possible because the Sun’s XACML implementation
provides the extension of modules. We will sketch out the evaluation process of Sun’s XACML
implementation in order to explain the relationship between RBAC profile 2.0 and the modules.

The RBAC profile specifies the following three types of XACML policies in order to support
core and hierarchical roles:

• Role Policy Set

• Permission Policy Set

• Role Authorization

The policy evaluation process can be roughly sketched as follows: at the time of policy en-
forcement, the XACML implementation (will be referred to as evaluator hereafter) receives the
request in form of XACML context. This XACML request provides the information about the
target, which acts as search mask for policies. This target consists of the information about
subject, resource, action and environment. Using this target, the evaluator finds a policy which
applies to this context, by comparing the target of context with the target of policies. After that,
the evaluator evaluates the policy.

There are two modules, which play an important role in finding the policies matching the
search criteria: PolicyFinderModule and AttributeFinderModule. The Policy-
FinderModule searches for PolicySet, Policy or Rule, whose target matches the tar-
get of the request. Furthermore, it also searches for policies, which are referenced by Policy-
Set or Policy.

If the target in policies specifies only the attributes of subject or resource, instead of their unique
identity, then the AttributeFinderModule should help the PolicyFinderModule to
resolve all attributes of the subject or resource. By resolving the attributes of the subject or
resource, a comparison between the targets could be performed.

In case of the RBAC profile of XACML, the Role Policy Sets (RPS) will be evaluated first. The
PolicyFinderModule searches through all RPS, whose target matches the request target.
Because the request’s target contains the subject identity and the RPS’ target contains only the
role as subject’s attribute, so a match could not be made. In this situation, the Attribute-
FinderModule should resolve the subject’s attribute, which contains the subject’s role. These
attributes are defined in the role authorization file.

16

After the match candidates are found, the PolicyFinderModule continues to search other
policies, which are referenced by the RPS. These referenced policies constitute the Permission
Policy Sets (PPS), which contains the permissions for each role. Note that, if these PPS do not
have any policies with the intended target, but the PPS have references to other PPS, then the
PolicyFinderModule should recursively follows these references, until a matching policy
is found or all PPS in the references are evaluated. In the latter case, the evaluator should send
an NotApplicable message.

As we can see, in order to enable evaluation of RBAC profile of XACML, one shall only need
to extends these two modules. The PolicyFinderModule should be able to follow all
policy references, and the AttributeFinderModule should be able to resolve the attribute
defining the role.

8 Policy Provisioning

In the course of the SicAri project the Policies working group and the Plattform working group
have been discussing different approaches how to provide the security policies to the SicAri
nodes. It has early been decided to use the protocol framework for Policy Based Network Man-
agement (PBN) which has been defined by the IETF Resource Allocation Protocol (RAP) WG.
The core of this framework is the Common Open Policies Service (COPS) Protocol [3]. The
COPS protocol provides a means to communicate policies and policy decisions in a distributed
system. The main characteristics are

• logical and architectual separation of policy enforcement and policy decision

• client/server model of PEP and PDP

• reliable transport of messages between PEP and PDP via TCP

• flexible and extensible through self-identifying protocol objects that allow to define arbi-
trary protocol payload

• stateful communication between PEP and PDP which share request/decision states that
allows the PDP to asynchronously update decisions and configuration information at the
PEP

COPS is designed to be used in two basic scenarios — outsourcing and configuration. In the
outsourcing scenario the PEP delegates all policy decisions to the PDP what has already been
described in 7.2. The PEP does not make any local decisions but may reuse decisions that it has
received earlier and that have not been revoked by the PDP. This scenario is extremely useful
when the mobile node where the PEP resides does not have the computational power or the
memory size to handle local policies and decision processes.

If the PEP has a local PDP (LPDP) at its disposal it may rather opt for the configuration scenario.
In this case the PEP sends a configuration request to the PDP and asks for the policies for those
modules that it is responsible for. The PDP in turn answers with a stream of policy configuration
data that will be used by the LPDP. For each chunk of configuration data that the PEP receives
it sends a confirmation message back. This way the PDP keeps track of the information the PEP
mirrors. Later on the PDP can provide update messages to the PEP if portions of the policy

17

become obsolete or are replaced with newer instructions. Figure 5 provides a schematic view
on the interaction between the PEP and the PDP and LPDP.

PDP

LPDP

PEP
COPS

Figure 5: Policy configuration of PEP with LPDP

It has also been considered to employ the COPS-PR variant of COPS for policy distribution. The
appendage PR stands for policy provisioning and extends the COPS protocol. Basically COPS-
PR can be used whenever you would apply COPS in the configuration mode. The authors of
this protocol extention motivate their work in the section "Why COPS for provisioning?" in [4]
with

[. . .] COPS-PR allows for efficient transport of attributes, large atomic transactions
of data, and efficient and flexible error reporting
[. . .] it is defined as a real-time event-driven communications mechanism, never
requiring polling between the PEP and PDP.

COPS-PR transports policy data and assumes a named data structure that is known as the Policy
Information Base (PIB). PEP and PDP share the same knowledge about the namespace that is
spanned by the PIB. Any PIB provides different Provisioning Classes (PRCs) that define the data
structures which are used for the corresponding type of policy. This allows for a fine-granular
distribution and update process of policy objects but in turn causes a management overhead since
the target policy language has to be defined as PRCs and has to be BER encoded. There exist
a couple of supplemental Request For Comments (RFC) documents that explain how to define
and structure policy data to be used with COPS-PR. RFC 3159 [11] provides the authoritative
rules for updating BER encoded PIBs. BER encoding stands for the Basic Encoding Rules [8]
for the Abstract Syntax Notation ASN.1 [7]. The Structure of Policy Provisioning Information
(SPPI) [11], defines the adapted subset of SNMP’s Structure of Management Information (SMI)
used to write Policy Information Base (PIB) modules.

In RFC 3318 [6] the authors give a framework for PIBs which defines a set of PRCs and textual
conventions that are common to all clients that provision policy using the COPS-PR protocol.

Since it was decided to use XACML as the language to specify the SicAri policies one would
have to translate the syntactical structures of XACML into a PIB and thus into ASN.1 syntax.
Furthermore this mapping has to be well-defined and elaborated. The advantages that COPS-PR
offers does not seem to legitimate such substantial overhead especially because plain COPS in
configuration mode suffices the SicAri requirements as well.

8.1 COPS in configuration mode

While the predominant usage of COPS is the outsourcing mode where the PDP server answers
policy decision requests from the PEP the COPS protocol explicitly provides the possibility to

18

requisition a whole configuration for a component. Because COPS is independent of any policy
type or language that it transports this component can either be a router interface or a webservice
object as in the SicAri case.

SicAri-Service PEP PDP

init

OPN

CAT

REQ

DEC

DEC

RPT

RPT

REQ

DEC

RPT

done

KA

KA

msc Configuration

Figure 6: Configuration request

Figure 6 shows the schematic sequence of the COPS configuration procedure. When a SicAri
service is started for the first time it contacts the PEP. The PEP sends a client open message
(OPN) to the corresponding PDP. This message contains a unique ID that identifies the PEP to
the PDP and it also contains a client specific information object (ClientSI). This object helps the
PDP to relay the open message to a PDP module that can handle the requests for this particular
client type. In case of the SicAri framework this will be an XACML.

When the PDP is capable to serve the client type it answers with a client accept (CAT) mes-
sage and expects incoming requests. In the configuration scenario the PEP sends a stream of
request messages (REQ) that contain context objects which identify the message as configu-
ration requests. The request messages also comprise ClientSI objects that carry client specific
information on the requested configuration data. It is up to the client type specification to define
a way how the requested configuration data is structured, addressed and identified. One COPS
REQ message may order the whole XACML configuration for a SicAri service or it may only
requisition separable parts of the XML structure. A supplementary document to this report will
discuss these questions and define the XACML client type for COPS.

19

Each configuration request may be answered with a single decision message or a stream thereof.
On reception and successful installation of the configuration data the PEP acknowledges this to
the PDP with report state message for each of the DEC messages.

When the PEP finally has received all configuration data from the PDP it signals the installation
back to the SicAri service which in turn can use the LPDP to decide its policy requests. The
PEP keeps up the connection to the PDP as long as the SicAri service remains active. For that
purpose it regularly excanges keep alive (KA) messages with the PDP.

8.2 XACML over COPS

The COPS standard [3] defines a query and response protocol to support policy control for
networking. The framework is designed to be extensible and does not make any assumptions
about the type of policies to be transported between the COPS clients and servers.

In the SicAri project we extend the COPS framework with an XACML client type. All COPS
messages start with a common header that determines the message type and the payload type.
Figure 7 shows the schema of this header whose relevant fields are described below.

Version Flags Op Code Client Type

Message Length

0 1 2 3

Figure 7: Common COPS header

The Op Code field indicates the type of the message like Request or Keep-Alive. The Client-type
field carries a 16Bit number that uniquely identifies the payload that is carried in this message.
For example a client-type of 1 defines that COPS transports RSVP policy data ([2]). In the
section "IANA Considerations" of [3] three different blocks of numbers are declared. IANA
stands for the Internet Assigned Numbers Authority which registers and tracks numbers that
have to be uniquely identifiable in the internet universum. These are numbers like port and
protocol numbers.

The first group of Client-type numbers covers the range from 0x0001-0x3FFF and its member
must be registered with IANA and they require a published COPS extension document. The
second group from 0x8000 - 0xFFFF is registered and tracked by IANA but IANA does not
assure uniqueness of the numbers nor does it demand published documents for these Client-
types. We chose to pick the Client-type number for our XACML extension from the third range
that is reserved for private use. These numbers are neither registered with IANA nor are they
ever supposed to be used in standards or released in products. With the progress in the SicAri
project it may be reconsidered to register a number for the Client-type with IANA or even
propose a standardization of it. Nevertheless the COPS usage for XACML will be documented
in an extra report that will accompany the SicAri implementation.

Each COPS message may consist out of different COPS objects. Section three of the COPS
standard defines the contents of the protocol messages and determines their mandatory and
optional parts. The message content is encoded with the help of 16 different predefined COPS
objects. Some of these objects provide fields to carry client specific data like error-codes or
reason-codes that signal why a particular request has to be deleted. The most important object is

20

the afore mentioned Client Specific Information Object (ClientSI) that has variable length and
transports the client-type data.

9 Policy Generation

This section will be provided in the next version of this document.

10 Outlook

After numerous discussions within the SicAri‘s policy integration team, we came to the conclu-
sion, that for a platform, such as the SicAri platform, which is highly distributed, asynchronous
and modular and using security policies in different ways and on different levels of descrip-
tion, the traditional concept of security policies may not be sufficient. Security policies may for
example describe

• access rules specifying which entities have (not) access to specific resources,

• security settings for different classes of security,

• security work flows (i.e. consideration of context information within security decisions),

• how to proceed, if the policy engine is not (yet) available (e.g. while the platform is
starting up),

• whether policy decisions can be made on the basis of locally cached policies (i.e. speci-
fying the freshness of cached policies),

• how to process in the case that policies cannot be updated (i.e. whether tot use the old
policy, or e.g. deny all access).

When putting all these aspects into the same security policy then we are caught in a vicious
circle. We cannot specify fallback mechanisms in the security policy for situations in that we
cannot access exactly that security policy.

Thus, we are planning to introduce a new concept, the so called meta policies. They include
rules and obligations — in contrast to security policies — for special or exceptional circum-
stances such as start-up of the platform, or instantiation or breakdown of the policy engine.
Meta policies specify security rules on a higher level of description. They act on top of the
traditional security policies. Meta policies may overwrite security policies or specify logical
operators and priorities for solving conflicting policy results. The application of meta policies
during the platform’s operation may additionally be an indicator for the healthiness of the SicAri
platform and/or for the the quality of the security policy specified. We will investigate the use
of meta policies within the SicAri platform.

21

References

[1] Sun’s XACML Implementation, Version 1.2. http://sunxacml.sourceforge.net/.

[2] J. Boyle, R. Cohen, D. Durham, R. Rajan, and A. Sastry. COPS usage for RSVP. , United
States, 2000.

[3] J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry. The COPS (Common Open Policy
Service) Protocol, RFC 2748. , United States, 2000.

[4] K. Chan, J. Seligson, D. Durham, S. Gai, K. McCloghrie, S. Herzog, F. Reichmeyer, R. Ya-
vatkar, and A. Smith. COPS Usage for Policy Provisioning (COPS-PR), RFC 3084. ,
United States, 2001.

[5] FlexSecure GmbH. Deliverable AW2.2: Design und Integration der Out-Of-The-Box PKI
— Architekturbeschreibung. Technical report, SicAri Consortium, 2004.

[6] S. Hahn, K. Chan, and K. McCloghrie. Framework Policy Information Base, RFC 3318. ,
United States, 2003.

[7] International Organization for Standardization. Specification of Abstract Syntax Notation
One (ASN.1), December 1987. International Standard 8824.

[8] International Organization for Standardization. Specification of Basic Encoding Rules for
Abstract Syntax Notation One (ASN.1), December 1987. International Standard 8825.

[9] International Telecommunication Union (ITU-T). X.501 Information technology — Open
Systems Interconnection — The Directory: Models.

[10] International Telecommunication Union (ITU-T). X.509 Information technology — Open
Systems Interconnection – The Directory: Public-key and attribute certificate frameworks.

[11] K. McCloghrie, M. Fine, J. Seligson, K. Chan, S. Hahn, R. Sahita, A. Smith, and F. Reich-
meyer. Structure of Policy Provisioning Information (SPPI), RFC 3159. , United States,
2001.

[12] J. Oetting, J. Peters, U. Pinsdorf, T. Rochaeli, and R. Wolf. Deliverable PF3: Specification
of the SicAri Architecture, Version 2.0. Technical report, SicAri Consortium, Oct. 2005.

[13] J. Oetting, T. Rochaeli, and R. Wolf. Deliverable PF2: Requirements for the SicAri Archi-
tecture. Technical report, SicAri Consortium, Jun. 2004.

[14] J. Repp, R. Rieke, and B. Steinemann. Evaluierung von sicherheitszielen auf basis von
policies. Technical report, SicAri Consortium, Aug. 2005.

[15] T. Rochaeli, R. Rieke, and R. Wolf. Deliverable Pol3: Policy Patterns and Its Application.
Technical report, SicAri Consortium, 2005.

[16] T. Rochaeli and R. Wolf. Deliverable Pol1: Requirements on SicAri Security Policies.
Technical report, SicAri Consortium, May 2004.

[17] T. Rochaeli and R. Wolf. Deliverable Pol4: Policy Generator. Technical report, SicAri
Consortium, 2006.

[18] RSA Laboratories. PKCS 11: Cryptographic Token Interface Standard.

22

A Glossary

ASN.1: Abstract Syntax Notation

BER: Basic Encoding Rules for the Abstract Syntax Notation ASN.1This section will be pro-
vided in the next version of this document.

COPS: Common Open Policy Service

COPS-PR: COPS Usage for Policy Provisioning

IETF: Internet Engineering Task Force

LPDP: Local Policy Decision Point

PAP: Policy Administration Point

PBN: Policy Based Network Management

PDP: Policy Decision Point

PEP: Policy Enforcement Point

PIB: Policy Information Base

PIP: Policy Information Point

PRC: Provisioning Class

RAP: Resource Allocation ProtocolThis section will be provided in the next version of this
document.

RBAC: Role-based Access Control

RFC: Request For Comments

SAML: Security Assertion Markup Language

SPPI: Structure of Policy Provisioning Information

SSL: Secure Sockets Layer

TCP: Transmission Control Protocol

XACML: Extensible Access Control Markup Language

23

	Introduction
	Architecture Specification Version 2
	SicAri Identity Management
	Identity Administration
	Identity Manager

	Authentication of Platform Entities
	Security Policy Integration Concept
	Policy-related Components of the SicAri Platform
	Bootstrapping

	Policy Enforcement
	Policy Decision
	Policy Decision Scenario 1
	Policy Decision Outsourcing Scenario
	Transport of Policy Decisions with COPS
	Using Sun XACML Implementation to Evaluate RBAC Profile of XACML

	Policy Provisioning
	COPS in configuration mode
	XACML over COPS

	Policy Generation
	Outlook
	Glossary

