
SicAri – A security architecture and its tools for
ubiquitous Internet usage

Deliverable MW1

Interoperability with
Component Standards and Web Services

Version 1.0, December 31, 2004

Jan Oetting, usd.de
Jan Peters, Fraunhofer IGD

Copyright c© 2004 SicAri Consortium

Contents

1 Introduction 3

1.1 Web Service Technology . 3

1.2 Mobile Agent Technology . 4

1.3 Integration . 4

1.3.1 Assumptions, Requirements, and Definitions 5

1.3.2 Example Scenarios . 7

2 Related Work 9

2.1 (Mobile) Agent Interoperability . 10

2.2 Web Service Enhancements . 10

2.3 Web Services and Static Agents . 11

2.4 Web Services and Mobile Agents . 12

3 Architectural Model 13

3.1 Assumptions . 14

3.2 Architecture . 15

4 System Integration 16

4.1 SeMoA . 16

4.2 AXIS . 19

4.3 Integration of SeMoA and AXIS . 20

5 Security Aspects 21

5.1 SeMoA Security Mechanisms . 22

5.2 Security of Web Services . 24

5.3 Security Architecture . 26

6 Discussion and Future Work 26

2

1 Introduction

According to the web service architecture as defined by W3C [49], aweb serviceis an abstract
notation which is implemented by a concreteagentas computational resource, owned by and
acting on behalf of a person or organization. An agent realizes one or more services and may re-
quest other services, in turn. The web service specification ensures the interoperability between
systems through machine-to-machine interaction over a network, whereas it avoids any attempt
to govern the implementation of agents.

On the one hand, this agent concept is defined on a high level of abstraction neglecting detailed
characteristics of the numerous existing agents systems. Furthermore, most current applications
either base on web service or on software agent technology, but not on both simultaneously. On
the other hand, the web service specification already indicates the integration of both technolo-
gies resp. hints at similarities and possible extensions/improvements of one technology through
the other.

Similar to web services, software agents can encapsulate business or application logic. Rather,
software agents can dynamically discover, combine and execute such processes, and further
offer multiple services or behaviors, that can be processed concurrently. In order to move from
one system to another, or even to communicate with each other, mobile agents currently need a
common platform on which they operate. Thus, they are useful for business partners only if these
actually share a common platform. The consistent use of web service standards for description
of capabilities, communication, and agent discovery would establish interoperability not only
between differ agent platforms but also between agent platforms and traditional web services.
Thus, the advantages of two worlds could be combined.

Furthermore, coherence specifically withmobile agents can already be seen in some of cur-
rent industrial approaches of implementing services for the web resp. implementing web ser-
vices [24, 18]. In contrast to static agents, mobile agents have the ability of processing in-
formation directly at the source of data, whereas bandwidth is conserved by the avoidance of
unnecessary network communication. To dynamically deploy both technologies without much
overhead for the application developer mobile agents and web services have to be integrated in
a seamless manner, whereas mapping processes have to be fully automated.

In the remainder of this section, we give a short overview about both web service and mobile
agent technology, subsequently we discuss a generic integration approach of these technologies,
and then describe two concrete example scenarios. Related work is reviewed in Section 2 with
respect to of agent interoperability, web service enhancements, and the integration of static as
well as mobile agents and web services. The proposed architectural model is covered by Sec-
tion 3, which is followed by integration details in Sections 4 and security concerns in Section 5.
Finally, we discuss our approach in comparison with existing contributions in the field (see
Section 6).

1.1 Web Service Technology

Web services are modular software components that can be invoked via the internet. A web ser-
vice itself is not an independent application but an interface between the web and the application
logic, whereas regular web servers provide the basic transport protocol (HTTP). The web service
standards have been defined to provide the foundation for an open web service framework [49],
and thereby to allow interoperable machine-to-machine interaction over a network.

3

Web services communicate via platform and programming language independent protocols that
are based on XML [48]. The three basic web service standards specify self description, commu-
nication, and localization of web services. TheWeb Service Description Language(WSDL) [9]
is used for a formal self description of the service; namely the protocol bindings and mes-
sage formats required to interact with the web service. TheSimple Object Access Protocol
(SOAP) [47] is used for synchronous communication with web services by means of invoking
its functionality. The third main component of the web service technology is the localization
service namedUniversal Description, Discovery and Integration(UDDI) [33]. UDDI defines a
platform-independent registry to list services on the internet. It is designed to be interrogated by
SOAP messages and to provide access to WSDL documents.

Web services are close to the point of becoming a mainstream technology, whereas they already
impact a broad range of commerce and industry. Even legacy applications are integrated into
todays business logic by means of web service wrappers for their functionality. Emerging Grid
computing frameworks, as there is the Globus Toolkit1, often imply the use of web services
and thereby support this process. Current research in the area of semantic web is also strongly
related to web services.

1.2 Mobile Agent Technology

In our opinion, the most promising way to integrate mobile services is by means of mobile
software agents. Franklin et al. [19] have reviewed and studied 11 definitions of agents in the
context of information technology and computer science. Based on those specific definitions,
we combined characteristic features to a basic agent type including:reactivity, agents react on
environmental changes;autonomy, agents have control over their actions;proactivity, agents do
not only react on changes of the environment;continuousness, the agent’s process runs without
interruption from its creation until the process finally dies. Talking of mobile agents in the fol-
lowing, we refer to an agent as a combination of these features addingmobility and the ability of
communication. Such an agent can be seen as a tuple of program code, data and execution state,
migrating from one execution environment (an agent server) to another. Accessing resources
locally enables agents to collect, to process and to publish data efficiently within a network.
Agents roam a network, seek information, and carry out tasks on behalf of their senders au-
tonomously. Hence, mobile agents offer great benefits to applications in networks by adding
client-side intelligence and functionality to server-side services.

Almost each mobile agent system is founded on research activities with a specific focus and
therefore follows a different design goal. Hence, each mobile agent system offers different
strengths, such as security, scalability, enhanced agent behavior, efficient migration, asynchronous
messaging, etc.. A detailed view on the agent model presupposed for this work will be given in
Section 4.1.

1.3 Integration

The integration of web service and mobile agent technology can be realized in many ways,
depending on the specific application scenario. In this section we first give generic require-

1Globus Toolkit - The implementation of the Open Grid Service Architecture (OGSA). http://www-
unix.globus.org/toolkit/

4

ments for the seamless integration of these two technologies. Then we present two integration
scenarios as examples.

1.3.1 Assumptions, Requirements, and Definitions

To integrate mobile agent and web service technology in a seamless manner, components have
to be designed, which map between the different mechanisms forservice description, service
invocation, andservice discovery, in both worlds. In other words, messages resp. representa-
tions from the according web service protocols (WSDL, SOAP, UDDI) have to be translated
into corresponding requests resp. data types of the agent system, and vice versa.

When we talk of aweb service enginein the remainder of this report, we mean the summary
of these components, which can be integrated into an existing agent system, and thereby extend
this system with web service abilities.

Especially in some communication-centered agent systems, this engine further has to bridge the
gap between the synchronous behavior of SOAP, and the asynchronous messaging paradigm as
it is specified by FIPA with FIPA-ACL, for example (cf. Section 2).

Describing the level of integration, we want to define the following features for the integration
of web services and agents:

self-contained The web service engine integrates all components for a seamless transition from
one technology to the other, without the need of additional external resources.

bidirectional The web service engine supports the invocation of web services by agents as
well as the provisioning of agent services by means of web services. Thus, it allows cross
boundary interaction in both directions.

automated After being properly configured and started, the web service engine does not require
any further manual steps executed by the user during runtime.

transparent The components of the web service engine are transparently integrated into the
agent system resp. the web service infrastructure. Neither agents nor web services as the
acting entities recognize the existence of the web service engine.

In the following, we illuminate some more details of the required integration processes. Assum-
ing, that service description, discovery, and invocation has already been solved separately within
both technologies, we only consider the two interesting cases which cross the virtual boundary.
Furthermore, we assume the integration being automated and transparent:

Agents offer web services (service provider) An agent offering encapsulated functionality
as service, generally registers the service within the local agent runtime environment, or at a
dedicated directory server within the agent system infrastructure.

⇒ A web service server stubhas to be created which accepts SOAP requests, transfers these
to the agent service by means of the agent system’s interaction paradigm (method invoca-
tion, message-based, event-based, etc.), waits for an optional result, and finally transfers
the result back to the requester as SOAP message.

5

⇒ The web service stub has to be made available through aweb service gatewaywhich
provides access to the stub over an appropriate transport protocol (HTTP, SMTP, FTP,
etc.).

⇒ Simultaneously, a WSDL-basedweb service descriptionhas to be generated, which con-
tains the service description and the link to the web service stub at the web service gate-
way. Dependent on the type of agent description, a syntactic service interface description
can be enriched by semantic information from an ontology or resource definition associ-
ated with the agent service (OWL, RDF, etc.).

⇒ The WSDL description has to be transformed into an appropriate UDDI business entity
containing the tModel (service interface) and binding template (pointer to web service
stub). This business entity is then registered at a UDDI-compliantweb service registry.

Agents utilize web services (service client) An agent planing to interact with another service,
usually searches for a corresponding service instance by a given service description. For ser-
vice discovery, the local agent runtime environment or the directory server of the agent system
infrastructure is requested.

⇒ Either a UDDI-compliantweb service registryautomatically transforms the service de-
scriptions of newly registered web services into the appropriate service description of the
associated agent system (active mapping),

⇒ Or the agent system resp. agent directory server implicitly triggers associated web service
registries upon search request from an agent (passive mapping). In this case, a given agent
service description is transformed into a UDDI business entity, which is then mapped
against already registeredweb services descriptions.

⇒ Dependent of the web service description a specificweb service client stubis created,
which accepts requests by means of the agent system’s interaction paradigm, and forwards
these as SOAP messages over the corresponding transport protocol to the associated web
service. In case of active mapping, this web service stub is created and integrated into
the agent system, when a new web service is registered. In case of passive mapping this
process is executed upon search request.

⇒ In either case, the agent implicitly invokes the web service through the web service stub
using the usual interaction paradigm of the agent system.

In a compound scenario, one agent might offer a functionality provided as web service which
in turn can be utilized by another agent acting as web service client. Assumingtransparent
integration, as we have defined it, the service as well as the client agent should not recognize
any “agent service to web service” resp. “web service to agent service” mappings during the
service description, discovery, and invocation process. In other words, they should only need to
know and utilize the usual mechanisms of their specific agent environment.

If this scenario is logically limited to one agent system or even limited physically to one agent
platform, the agent system should provide internal mechanisms to circumvent cross-boundary
mappings, and thereby optimize the single processes. If this scenario includes service and client
agents from different agent systems, the web service integration engine does not only provide

6

compatibility to the web service world, but implicitly represents a layer foragent system inter-
operability.

Hybrid systemsare conceivable, whereas an external web service call from a legacy but web
service enabled system is transfered to a mobile agent. This agent is subsequently initiated to
fulfill its task within the mobile agent infrastructure and finally returns a result which is automat-
ically transformed into a corresponding response message. Respecting given time constraints of
the synchronous web service protocol, the agent might visit another agent platform, initiate and
interact with further agents, or even invoke other web services. The other way round, an agent
is able to initiate a workflow within a web service environment.

As we talk of mobile agents based web services, i.e. program code is transported to another
host and executed locally within a foreign environment, we must not neglect the corresponding
security aspects. Within the mobile agent community there has been elaborate discussion about
security concerns in the past. A lot of solutions and protocols have been proposed which prevent
or at least reveal malicious behavior dependent on the specific application. When integrating
web services and mobile agents it has to be assured that the new mean of service interaction
does not bypass or override existing security mechanisms of the agent system.

Although web services are usually meant to be stateless and static service components, we
finally want to underline one of the mobile agent’s benefits as there is the migration of context
and state to a new location of execution, and thereby introducestatefulmobile web services as
another enhancement of regular web service frameworks.

1.3.2 Example Scenarios

As shown in Figure 1 the first scenario distinguishes the following three entities within a network
community:

Provider A provider allows access to locally hosted resources through web services, imple-
mented as components within a regular application server. Further he runs a mobile agent
platform which accepts agents from community members and grants them local access to
the provided web services.

Community Member Thecommunity memberinvests his knowledge to implement a service
with added value which is based on functionality of the provider’s web services. Em-
bedding this compound service in a mobile agent, and subsequently migrating this agent
to the provider’s agent platform, it is able to benefit from the optimized access to local
services.

Regular client If the community member’s agent in turn registers the API for its compound
service within the agent platform, this service can subsequently be invoked as web service
by the community member and otherregular clientsthrough the agent platform’s web
service engine.

In this provider-based network community (e.g. a gaming platform), a community member is
able to improve the provider’s web service framework for himself and other community mem-
bers. On the one hand, the community member does not need to setup its own web service
framework to provide his services with added value. The compound service further benefits of

7

Application Server

Mobile Agent PlattformMobile Agent Platform

Web Service Client

WS

MA

WS

MA

WS

invoke

invoke

migrate

Figure 1: A mobile agent (4) embedding a compound service migrates from its origin to a
provider’s agent platform, and subsequently accesses services (2) within a locally running ap-
plication server to fulfill its task. By registering the compound service within the agent platform
this service with added value is provided as web service, not only to its owner, but to every
regular web service client (◦).

local access to resources. On the other hand, the provider is still able to select and encapsulate
incoming agents by enforcing its security policy through the agent platform. Thereby, he bene-
fits of community members improving the web service framework he provides, and is in control
of the additional features at the same time.

The second scenario describes the integration of mobile agent’s load balancing abilities (see [6])
into a web service framework. Figure 2 depicts a web service client on the left and a web service
provider on the right.

Instead of running a number of application servers, the provider installs its services by means of
mobile agents, running on distributed agent platforms. Transparently for the agents, the agent
platforms provide these services as web services to the outside world. In case, the work load
on a local platform exceeds a certain limit, single service agents might migrate to another plat-
forms, while an UDDI registry hosted by the provider is implicitly informed about resulting
service movements. A web service client, searching for a specific functionality, requests the
UDDI registry for current information about the provided web services, and subsequently in-
vokes the returned service instance. Especially when providingstatefulservices with respect to
enhanced client session management, or server-sided service contexts, this approach has further
advantages. In case, a single server needs to be shut down or restarted, all running services
including their current context and state can be moved to a backup server beforehand.

As referred in the following section, these are just two examples among a couple of others.
Nevertheless, the reader should have got a glance of the possibilities which open up to the

8

Web Service Provider

MA Plattform <n>

MAWS

MA Plattform <i>

MAWS

MA Plattform 1

MAWS

m
ig

ra
te

UDDI Registry

WS

Web Service Client

WS
request

in
vo

ke

...

...

Figure 2: Load balancing of stateful web services can be provided by mobile agents embedding
service functionality, dynamically distributed among agent platforms by means of migration.
While the agent platforms transparently provide these services as web services, and inform a
UDDI registry about the current location of a web service, a client is able to invoke the web
service as usual, after having requested current service information from the registry.

developer, when combining (mobile) agents and web services.

2 Related Work

The work described in this report has been strongly influenced by resp. is evolved from several
existing contributions to the field. In this section we want to give an overview about related work
covering general agent interoperability, the enhancement of existing web service frameworks,
the integration of static software agents and web services, and finally, existing papers about the

9

integration of web services and mobile agents.

2.1 (Mobile) Agent Interoperability

In the area of agent interoperability only a small number of efforts have taken place so far. A well
known approach for mobile agents is the MASIF proposal [31] by Milojicic et al. which suggests
a standardization for an agent transport protocol. The activities of FIPA2 in the standardization
of software agent issues are rather known. FIPA’s work focuses on a high level of abstraction,
e.g. communication protocols, ontologies, etc., whereas specifically the FIPA standardization
on agent communication issues [15] found broad attention.

Because of the variety of agent systems, another non standard-based approach to mobile agent
interoperability describes a formal way to analyze the lifecycles and environments of foreign
agent systems [42, 38, 37]. Foreign agents are subsequently integrated into a local agent envi-
ronment by means of an appropriate wrapper for the foreign lifecycle, and by mapping the for-
eign environment’s mechanisms (mainly service interaction, naming/tracking, migration, and
communication) to the local environment’s components. Thereby,runtime interoperabilityis
defined as “the ability of a (mobile agent) system to start any software component of a different
component-based system and act as full replacement for the component’s original runtime en-
vironment”. This mean of interoperability has successfully been integrated by the authors into
an existing mobile agent system supporting JADE and Aglets agents resp. OSGi components.

2.2 Web Service Enhancements

With respect to web services there are a couple of approaches, which try to enhance partial
aspects of existing web services framework as there is web service registration or client-sided
web services invocation, for example.

In [46] a keyboard-controlled and browser-embedded console is presented, which allows an
experienced web user to easily invoke single web services. Furthermore, a web-based IDE
provides visual composition of web service calls and simple control structures to support au-
tomation without the need of software installation on the client. Combining known interaction
techniques (HTML-Form based interfaces, graphical entering of workflows, code completion)
with existing programming and web service technologies (JavaScript, Java, Apache AXIS) the
developed framework creates a web service abstraction layer for users with little or even no
programming skills.

While web services already provide distributed operation execution as well as service publi-
cation and discovery, UDDI is still based on a centralized design. In [50] the mechanisms of
UDDI-based web service registries are combined with recent P2P systems offering distributed
hash table functionality to dynamically process search queries in real time, within highly dis-
tributed environments. Furthermore, domain ontologies are used to annotate web services with
semantic information. Thus, this approach provides a scalable mean of web service discovery
without the need of a central registry and allows semantic classification based on domains.

2FIPA - Foundation for Intelligent Physical Agents. http://www.fipa.org/

10

2.3 Web Services and Static Agents

As listed in Section 1 there are several good reasons to integrate software agents and web ser-
vices. Hence, it is not surprising that there already are a couple of approaches in this context.

Very early integration attempts are described by Moreau et al. who, step by step, ported the
different mechanisms of theirSouthampton Framework for Agent Research(SOFAR) to XML-
based protocols, and described their experiences [32, 3]. Since this extended agent platform
was used in a grid computing scenario, the porting process was stated as one example for the
convergence of three major technologies as there were software agents, web services, and grid
computing.

The Working Intelligent Simple E-commerce(WISE) architecture wants to go half the way
from current web services standards to the semantic web initiative [51]. Software agents are
included on the client device and/or the web service server to add web service intelligence by
means of assisting decision-makings. These agents are capable of managing context and profile
data of the users resp. a provider’s customers, and support the user resp. customer in selection
of the right web service with respect to his current needs. Furthermore, quality of service (QoS)
parameters are monitored by a specific QoS agent, either per service on the client or for a bunch
of services on the server, which in turn provides valuable information for web service selection.
The proposed architecture is implemented on top of J2EE web services as an extra layer within
the J2EE infrastructure stack.

A mediator based solution which allows multi-agents systems to access web services is outlined
in [5]. In the context of physicians, searching appropriate therapy protocols for the treatment
of patients with cancerous diseases, the use of the FIPA-compliant multi-agent system JADE3

is proposed, mapping confidential patient data to available therapy protocols collected via web
services. The mediator is integrated by means of a gateway with the ability of transforming
FIPA-ACL messages into corresponding SOAP messages and vice versa.

In the context of web service integration into FIPA-compliant software agent systems, [28] dis-
cusses pertinent design and usage factors. Both cases are considered, software agents as clients
requesting external web services, and software agents as web service providers for non-agent
clients. A J2EE-based framework is proposed which maps SOAP to FIPA-ACL messages (and
vice versa), and bridges the gap between synchronous request processing on the web service
side and asynchronous message processing within the agent system. Furthermore, components
are suggested mapping FIPA service descriptions published within a FIPA directory facilitator
to web service descriptions (WSDSL) published through UDDI registries. In either case a spe-
cific agent (a proxy agent resp. a web service agent) is created to provide external web service
functionality within the agent system resp. expose agent-based services to external web service
clients.

An approach to make web services available to agents in an Agentcities4 environment is de-
scribed in [14], whereas interoperability between FIPA agent service and web service environ-
ments is provided by two separate “agent to web service gateways” (one for each direction),
intended for use by the JADE agent system. A reference model is defined with required and
optional features. Since FIPA-ACL based inter-agent conversation is more complex and se-
mantically richer, than simple request/response of web services, manual configuration steps are
necessary to map this communication as part of theWeb Service Agent Gateway(WSAG).

3JADE - Java Agent Development Framework. http://jade.tilab.com/
4Agentcities. http://www.agentcities.org/

11

However, the tool WSDL2JADE (cf. [43]) is provided to automatically generate an agent on-
tology as well as the agent deployment code from a given web service description. In [44] the
agent-based approach of migrating web services to semantic web services using ontologies is
outlined in more details.

As enhancement of the afore mentioned design ideas, [21] introduces theWeb Service Integra-
tion Gateway(WSIGS) as gateway between FIPA-compliant agents and standard-conform web
services. This architecture covers all necessary components, allowing web service invocation
from an agent, agent service invocation from a web service client, as well as registry access
for both web services and agents. Instead of partitioning the main functionality to distributed
agents/components, this approach integrates mapping and translation of service description, ser-
vice discovery and service invocation within one gateway instance. Thus, this gateway can be
used in a transparent way by both technologies. Furthermore, WSIGS provides resp. enables
some advanced features as there is fail-over redirection in case a service published is no longer
available, active proxying to interface registered services by means of semantic service descrip-
tions, and dynamic composition of web services with respect to a workflow.

2.4 Web Services and Mobile Agents

In contrast to partly sophisticated solutions of integrating web services and static software
agents, there are only some first approaches of combining web services with mobile agents.

A loose integration of web services and mobile agents with respect to load balancing is de-
scribed in [6]. In contrast to existing client-based, DNS-based, dispatcher-based, or server-
based approaches for load balancing on distributed web servers, the authors propose aMo-
bile Agent based Load Balancing Framework(MALD). Three types of agents concurrently
monitor workload on the local server, gather information from other web servers by traveling
around, and execute selection policies on overloaded servers to redirect incoming jobs on the
fly. The evaluation of the framework in the intranet as well as wide-area networks underlines
the performance-improvement of this mobile agent-based load balancing in comparison with
traditional approaches based on message passing.

Another approach suggests an agent-based multi-domain architecture [30] for service provision.
The user connects to its user-domain through a web portal, and thereby accesses locally offered
composite services. These services can be based on a set of primitive ones, which are associ-
ated with one or more provider-domains. To fulfill a composite service request, a local delegate
agent is created together with a mobile user agent. While the delegate agent coordinates service
selection, execution, and result composition, the user agent is interacting with provider agents
within the provider domains, which offer web service functionality as primitive services. The
user agent is instructed by the delegate agent, and subsequently executes primitive services ei-
ther by using remote inter-agent communication, or by migrating to the provider-domain and
then interacting with the provider agent locally. Thereby, composition and execution of services
can be carried out concurrently. In [29] this concept is extended to physically mobile environ-
ments to provide mobile services (M-services), whereas mobile users are able to start agents on
their current mobile device, which is bound to a service infrastructure via a wireless connection.

Similar work in the context of dynamic binding to specific web service instances is provided
in [36]. Based on the assumption that composite web services entail the invocation of services

12

from different service providers which in turn may invoke further web services, service depen-
dencies can be presented in aninvocation tree. The authors state, that a requesting client should
have the possibility to set up constraints limiting the service execution time or the depth of the
invocation tree. A RPC-based model, a plain mobile agent based model and a model using cir-
culating mobile agents for service execution are compared with respect to availability, reliability
and execution time.

Cooney and Roe state having chosen the simplest approach possible to integrate web services
and mobile agents by an alternative that involves only few extra concepts [11]. Their prototype
implementation uses the .NET framework for provision, description and invocation of static web
services, with some mobile agent technology extension: A framework that provides a process
migration service for .NET is reused to enable code mobility. Inter-agent communication is
available but limited to the invocation of web services, whereas local web service invocation
is optimized. Thereby, the caller as well as the callee cannot tell, if it has invoked resp. has
been invoked by a legacy web service or mobile agent implementation. Instead of a one-to-one
mapping between services and mobile agents, a new mobile agent instance is created for each
incoming web service request. A drawback of this decision is the fact that there is no mean of
service revocation (migration of a service agent causes its definition to spread among the hosts),
and that it is not possible to create stateful web services (this would further require the support
of multiple threads).

Another approach of web service and mobile agent synthesis describes aMobile Web Services
(MWS) by interaction protocols, internal behaviors, and migration behaviors [23]. In the cur-
rent prototype a MWS is implemented as fix Bee-gent5 agent which interprets a BPEL6-based
process description for interaction, the Java-based service components, and a XML-based de-
scription of migration policies. The agent platform creates interpreter agents upon external web
service requests for registered composite services, and supports basic web service functionality
allowing these services to access external web services, in turn. Each migration rule annotates a
migration behavior with an execution block, whereas real migration as well as cloning of single
execution blocks is supported.

3 Architectural Model

Interoperability between web services and mobile agents will be enabled through a compo-
nent named web service engine. The web service engine, containing all necessary modules to
integrate mobile agents and web services in an automated and transparent way as defined in
Section 1.3, bidirectionally maps between both technologies (cf. Figure 3). In addition to the
functionality provided by an existent mobile agent gateway, agents (4) are enabled to request
and interact with external web services (2), and external web service clients (◦) are enabled to
request and invoke services encapsulated by agents.

The Java-based engine internally uses and extends the AXIS7 framework to dynamically create
SOAP processors independent of the underlying transport protocol. Our prototype is integrated
into the security-centric mobile agent system SeMoA8. Nevertheless, the web service engine

5Bee-gent - Bonding and Encapsulation Enhancement Agent. http://www.toshiba.co.jp/beegent/
6BPEL - Business Process Execution Language for Web Services. http://www.oasis-open.org/committees/wsbpel
7AXIS - Apache Extensible Interaction System. http://ws.apache.org/axis/
8SeMoA - Secure Mobile Agents. http://www.semoa.org

13

can easily be integrated into all Java-based (mobile) agent or component systems, and connect
to all web service frameworks, which satisfy the assumptions listed in the following section.

Web Service Provider

Web Service Client

SOAP

UDDI - Registry

SOAP

U
D

D
I

U
D

D
I

UDDI

WSDL

WSDL

migrate

migrate

communicate

communicate

W
e

b
 S

e
rv

ic
e

 E
n

g
in

e

register

request

M
o

b
ile

 A
g

e
nt G

a
te

w
a

y

Mobile Agent Plattform

Figure 3: WSE Integration Architecture

3.1 Assumptions

Derived from [21], the following assumptions were made when designing the web service en-
gine:

• The agent runtime environment provides mechanisms for service description, invocation,
and discovery, which are based on direct (or remote) method invocation in Java resp.
sharing of Java-APIs as service interfaces.

• All web services are assumed to use the standard web service stack consisting of WSDL
for service description, SOAP for service invocation, and UDDI for service discovery.

• The web service engine is transparently integrated into the agent server by means of an ex-
tended service management layer, whichimplicitly transforms locally registered services
into web services accessible from external web service clients (and vice versa).

• The web service engine is further visible as service within the agent server, which can
explicitly be used by other services and agent (to search for and invoke resp. to register
web services).

• The web service engine is visible from web service clients as gateway supporting various
transport protocols (mainly HTTP and HTTPS). Service endpoints within this gateway
are dynamically generated and publish via UDDI.

14

• If the agent system supports semantic agent service descriptions, these are available to the
web service engine.

3.2 Architecture

Our proposed solution to implement theWeb Service Engine(WSE) as specified in this re-
port, covers several individual components and a service management layer which can easily be
adapted and plugged into the existing service management of the specific mobile agent platform.

Stub Generator SOAP messages transported through the network as result of a web service
invocation, are typically exchanged between a client and a server stub. With respect
to the WSE architecture, the server stub processes incoming messages and triggers the
associated service object by means of direct method invocation. Vice versa, the client
implements the service’s interface and starts communication with the associated server
stub, upon local method invocation. Thereby, the task of thestub generatoris twofold.
On the server side, it extracts the specific Java interface from a given service object, auto-
matically generates a corresponding syntactic WSDL description and creates a new server
stub, which is then associated with the service object. On the client side, it transforms a
given WSDL description into the corresponding Java interface, and creates a client stub
implementing this interface. To realize automated and transparent integration for Java-
based systems, the stub generator must be able to dynamically generate new stub objects
during runtime.

Web Service GatewayServer stubs created by the stub generator have to be exposed by means
of web services endpoints accessible over the network. Theweb service gatewaythereby
implements the specific transport protocols and serves as both, as web server enabling
access to server stubs (e.g. over HTTP and HTTPS) as well as web client used by client
stubs as transport layer for the transmission of SOAP messages.

Registry Service To make agent services visible by means of web service discovery, thereg-
istry servicetransforms WSDL descriptions created by the stub generator from a given
service object into appropriate UDDI business entities. These business entities can subse-
quently be registered at a UDDI-compliant registry. Furthermore, this service can be used
to search for a web service which is syntactically compatible to a given Java interface.
Thus, this service implements passive mapping as defined in Section 1.3.

WSE Service TheWSE Servicewraps the above described functionality and provides it via a
simple interface which canexplicitly be used by mobile agents to either search for web
services, or to deploy and undeploy encapsulated service objects. In both cases, the agent
does not need to know anything about the traditional web service stack: deployment is
done by giving a Java object implementing a certain Java interface which is automatically
exposed by means of a web service, then; a search request with a given Java interface
directly returns the reference to a client stub implementing this interface, if successful.

Service Management LayerTheservice management layertransparently activates the above
described processes by automatically forwarding appropriate requests (to register or lookup
an agent service within the agent infrastructure) to the WSE service. Since web service
deployment and undeployment is subsequently done implicitly, the administrator of the

15

local agent server can configure this layer in advance, and select the types of services to
automatically expose as web services.

In case of SeMoA (see 4.1), the only mean of interaction between mobile agents and/or services
is based on direct method invocation through shared Java interfaces: Services are registered
locally as entities within a hierarchical namespace (the serviceenvironment). Thus, a service
requester searches for an appropriate service interface within a defined sub hierarchy of the
environment. If successful, a Java object is returned which implements the given interface.
Figures 4 and 5 show the corresponding extended processes for (web) service deployment and
undeployment resp. (web) service discovery, in case WSE has been embedded into SeMoA.

Register Service

Publish Service
Instance within
Environment

Web Service
Treatment?

Translate Service
API to WSDL

Create Server
Stub and deploy
as Web Service

YES

NO

Register Web
Service (API and
WSDL) via UDDI

Revoke Service

Retract Service
Instance from
Environment

Web Service
Treatment?

Undeploy
Web Service
Server Stub

YES

NO

Revoke
Web Service

via UDDI

Service registered
(Web Service
deplyoyed)

Service revoked
(Web Service
undeployed)

Figure 4: Deployment/Undeployment of a (web) service

4 System Integration

In this section, we first introduce the core systems used for synthesis of mobile agents and web
services, and then outline the required modifications to integrate both implementations.

4.1 SeMoA

Secure Mobile Agents(SeMoA) [40] is a Java-based open source framework for mobile agents
with a special focus on all aspects of mobile agent security, including protection of mobile agents
against malicious hosts as well as protection of hosts against malicious agents (cf. Section 5.1).

Within a SeMoA infrastructure mobile agents are able to migrate from one agent server to an-
other, access locally published services, and communicate with other agents.Mobile agents

16

Lookup Service

Lookup Service
Instance within
Environment

Service found?

Search Web
Service (API)

via UDDI

YES

NO

Web Sevice
Treatment?

YES

Web Service
found?

NO

NO
Create

Client Stub with
requested API

Request WSDL

Exception:
Service not found

Result: Reference
to Service Instance

Result: Reference
to Client Stub

Instance

Return
Service API

Figure 5: (Web) service discovery

consist of program code, data (initial properties and collected information), and meta informa-
tion. They are launched within an agent server and subsequently process tasks on behalf of
their owner. Basic and extended features of an agent server are provided by means ofservices,
whereas a service is a Java module with a specific functionality, accessible through a well de-
fined Java interface. Services can either be published by the local administrator of the agent
server or by mobile agents as far as they have the proper security permissions. Theenvironment
is responsible for sevice publishment and discovery, and the only mean of local interaction be-
tween sevices and/or agents. Although agents and services encapsulated by agents are handled
different than services published by the platform administrator with respect to access control
and other security related issues, the environment as basic mean of interaction is shared by all
agents and services on a local SeMoA platform.

The SeMoA platform (the agent server) has a layered structure (see Figure 6). The kernel
layer contains a command shell for bootstrapping and administation purpose, inherent security
mechanisms, and the above mentioned environment for service management. On top of the

17

SeMoA Services

SeMoA Kernel

Shell Environment Security

Java Virtual Machine

SeMoA Platform

Operating System

CommunicationMigration

Tracking
Agent

...
Agent

Figure 6: The SeMoA platform consists of a kernel and a service layer.

kernel, services and encapsulated mobile agents are executed within the runtime environment
of the service layer. Some essential services, as there are services for agent migration, agent
tracking and agent communication for example, are already installed and published during the
bootstrapping phase of the agent server. Optionally, a variety of additional services included
in the SeMoA framework can be loaded dependent on the desired characteristic of the local
platform. In the context of web service integration, the available web server implementation
which supports Java sevlets is very usefull.

Since the SeMoA environment (see Figure 7) is the main component for local service manage-
ment, this module is described more detailed in the following: The environment is a hierarchi-
cally structured namespace wherein service instances can be published under a given path. This
is analog to a file system, where paths lead to files - with the exception that paths are virtual in
the SeMoA environment, i.e. the paths of all published services build the hierarchy and not vice
versa. Subsequently, this anomaly allows the coexistence of a path and an equal service name
within the same "directory". Again analog to a file system, the access to sub hierarchies or ser-
vice objects can be restricted by means of access rights, as there is a specific permission for read
access (lookup), and two permissions for write access (publish, retract). Since the environment
is the only way of interaction between service and service, kernel and service, or application
and service, this is an essential location for policy enforcement.

Besides being a kind of service directory, another important feature of the environment is the
encapsulation resp. separation of services. When publishing a service the administrator can
specify a so-calleddynamic proxy, which is used for service interaction, subsequently. The
following two types of proxies are specified for the SeMoA platform:

Plain proxy This type forwards method invokations to the encapsulated service object within
the same thread. Initiated by a privileged signal, the proxy truncates the reference to the
encapsulated object and releases it for garbage collection, as there are no more strong
references to the object. Further method invokation leads to a corresponding exception
thrown by the proxy. Thereby, access to the service can be prevented, even if another

18

SeMoA Platform

Environment Services / Agents

Figure 7: Local services are published and accessed through theEnvironmentin SeMoA.

service has requested access to the object and still keeps the according reference, since
the reference refers to the proxy not the encapsulated service object. Nevertheless, the
proxy is not able to appropriately treat references returned by methods of the encapsulated
object. Otherwise mechanisms were needed analog to active firewalling.

Asynchronous proxy This type initiates a distinct thread to serve method invokations. The
caller thead is blocked till the result of the invoked method is available. The advantage is,
that the caller thread may set a timeout, after whose expiry the caller thread can terminate,
even if the method result is not available so far.

In both cases only public methods of all implemented interfaces of the published service ob-
ject are wrapped by the proxy. These mechanisms reduce DoS attacks by possibly malicious
or faulty applications and services. Further the encapsulation allows clean security context
switches between caller and callee. Another security feature enables the return of a local view
of the global environment to each single service. This local view of the environment automat-
ically remembers all objects published by this service, and then retracts all those object, when
the service is terminated.

4.2 AXIS

Axis9 is the third generation of Apache SOAP (which began at IBM as “SOAP4J”), and thereby
represents a framework for constructing SOAP processors such as clients, servers and gateways,

9AXIS - Apache Extensible Interaction System. http://ws.apache.org/axis/

19

independent from the underlying transport protocol. Furthermore, Axis supports the Web Ser-
vice Description Language (WSDL), which allows you to easily build stubs to access remote
services, and also to automatically export machine-readable descriptions of your deployed ser-
vices from Axis.

The default deployment process of a web service in Axis requires manual steps: Emanating from
a service, implementing a certain Java API, the XML-based web Service Deployment Descriptor
(WSDD) has to be created. Together with the service implementation this deployment descriptor
is used to subsequently deployed the service by the Axis engine, which generates the web service
server stub as well as the web service description. Access to both, the server stub and the
WSDL description is realized trough the Axis servlet. On the client side the WSDL description
can be used to generate the corresponding client stub. Finally, the client and server stub are
able to communicate through SOAP (e.g. Java-RPC) over a defined transport protocol, which
subsequently enables the client to invoke functionality of the service.

4.3 Integration of SeMoA and AXIS

We make use of the Axis open source framework, because it can easily be plugged into SeMoA’s
servlet engine and because of its flexible configuration and extensibility (especially with respect
to web service security) [1]. Conform to SeMoA’s local service management and through an im-
plemented Axis wrapper managing WSDD creation from a given Java-API, the Axis framework
is used to automatically process the above described deployment steps. In other words, a service
published in the SeMoA environment is then accessible as web service through SeMoA’s web
server by a remote client. This is done in a transparent way for the service or agent developer,
presupposing that the developer has either set a certainweb service flagwhen publishing the ser-
vice, or published the service in a certainweb service regionof the environment. This extension
of SeMoA’s service management further includes a UDDI service enabling service discovery in
a distributed infrastructure which is compatible to the web service specification (see Figure 8).

Axis supports scoping service objects (the actual Java objects which implement the service
functionality) three ways:Requestscope will create a new object each time a SOAP request
comes in for the service,applicationscope will create a singleton shared object to serve all re-
quests, andsessionscope will create a new object for each session-enabled client who accesses
the service. Since our goal is to enable state-full mobile web services and because of an im-
plementation flaw of AXIS (service object are internally cached within the Axis engine, when
using the application scope, and thereby reused after an un-deployment/deployment process),
we implemented our own deployment provider, which ensures that an external service request is
forwarded to the service implementation, which is referenced within the SeMoA environment.

Furthermore, we improve the process of server and client stub generation which is supported by
Axis only in a manual half-automated way (see regular processes in Figure 9). As consequence,
a service can directly be deployed as web service on server side without the need of manually
generating a deployment descriptor or accessing files in the local file system. On the client side,
our framework contains dynamic and fully automated generation of Java instances out of a given
web service description, again without the need of manual steps or the creation/access of files
in the local filesystem (see our framework in Figure 9).

Another advantage of our framework is an improvement of the general development process,
when handling web service: In a regular process, a service is first implemented and then de-
ployed a web service on server side, before the description is requested and subsequently the

20

SeMoA Platform

Environment Services / Agents

AXIS Engine

WS-GW invoke

WSDL

UDDI Service
WS-GW

request

register

register request

Figure 8: Service management extensions needed for web service interoperability in SeMoA.

corresponding stub is generated and compiled on the client side. Within our framework, only the
Java interface has to be specified and shared between the developers. Subsequently, the service
and a its client can be implemented in parallel (see Figure 10).

5 Security Aspects

Both web service and mobile agent technology have different attack scenarios and thus ask for
different solutions. The main concern in web service security is to prohibit unauthorized access
to resources from (malicious) clients. Mobile agent security also cares about malicious agents
and malicious hosts. In our approach we combine security mechanism of SeMoA with security
mechanisms from web service technology.

First the security features of SeMoA are described. After that, we introduce the current security
mechanism offered by web services technology. In the third part of this section we present our
approach on how to combine both security means.

21

Web Service
Description

(WSDL)

Client Stub
(JAVA Sources)

Client Stub
(CLASS Files)

Client Stub
(Java Instances)

JAVAC (J)

(manual)

ClassLoader (J)

(runtime)

WSDL2JAVA (A)

(manual)

URL File File Object

Web Service
Description

(WSDL)

Client Stub
(Java Instances)

WebService2ClientApi

(runtime)

URL Object

Service API
(Java Source)

Deployment
Descriptor
(WSDD)

AxisAdmin (A)

(runtime)

Developer IDE

(manual)

File File Object

Service API
(Java Instance)

Deployed
Server Stub
and WSDL

ServiceApi2WebService

(runtime)

Object Object

Deployed
Server Stub
and WSDL

O
u

r F
ra

m
e

w
o

rk
O

u
r F

ra
m

e
w

o
rk

R
e

g
u

la
r p

ro
ce

ss
A

p
a

ch
e

-A
X

IS
R

e
g

u
la

r p
ro

ce
ss

A
p

a
c

h
e

-A
X

IS

C
lie

n
t S

id
e

S
e

rve
r S

id
e

Figure 9: This figure represent the regular processes of Apache-AXIS as well as the improved
ones within our framework on client and server side, which are necessary to deploy and use a
Java service as web service.

5.1 SeMoA Security Mechanisms

A mobile agent platform constitutes the runtime environment for the agents and further provides
the middleware for access to local resources. It is quite clear that this platform should follow a
security aware design concept. The SeMoA project developes an open server for mobile agents
with a special focus on all aspects of mobile agent security, including protection of mobile
agents against malicious hosts as well as protection of hosts against malicious agents [40].

The security architecture of the SeMoA server compares to an onion: agents have to pass all
of several layers of protection before they are admitted to the runtime system (see Figure 11)
and the first class of an agent is loaded into the server’s Java Virtual Machine. The first (outer)
security layer is a transport layer security protocol such as TLS or SSL. This layer provides mu-
tual authentication of agent servers, transparent encryption and integrity protection. Connection
requests of authenticated peers can be accepted or rejected as specified in a configurable policy.
The second layer consists of a pipeline of security filters. Separate pipelines for incoming agents
and outgoing agents are supported. Each filter inspects and processes incoming/outgoing agents,
and either accepts or rejects them. Subsequent to passing all security filters, SeMoA sets up a
sandbox for the accepted agent (which can be regarded as layers three and four). Each agent
gets a separate thread group and class loader. This class loader supports loading classes that

22

Sepcify
Service API

Implement
Service

Implement
Client

Implicitly Deploy
and Register
Web Service

Implicitly Search
and Invoke

Web Service

Sepcify
Service API

Implement
Service

Create Server
Stub and WSDL

Deploy and
Register Web

Service

Request WSDL
Service

Description

Generate
Client Stub

Implement Client

Invoke Service

Server Side Client SideServer Side Client Side

Our FrameworkRegular Process

Figure 10: In contrast to the sequential development process when using the regular Apache-
Axis framework, our framework allows parallel development on client and server side.

ServicesAdministration, audit, logging

Environment

Agent

Transport Layer Security:
authentication, encryption, integrity

Content inspection:
filters, digital signatures, encryption

Dynamic bytecode loading & filtering,
access controlDynamic proxy generation,

agent encapsulation

Implicit names for privacy
protection, agent tracking, and

scalabe message routing

Figure 11: Incoming and outgoing agents have to pass several security layers.

came bundled with the agent, as well as loading classes from remoted code sources specified in
the agent. Agents cannot share classes so one agent cannot not load a Trojan Horse class into
the name space of any other agent. Agents are separated from all other agents in the system;
no references to agent instances are published by default. The only means to share instances
between agents is to publish them in a global environment. Each agent gets its own view on this

23

global environment, which tracks the instances registered by that agent. All published objects
are wrapped into proxys which are created dynamically. The agent identifier is generated from
its signed static part (i.e. program code and initial parameters) by means of a cryptographi-
cal hash of the agent owner’s digital signature. Thereby, thisimplicit nameis globally unique
with respect to cryptographical digests, and an agent cannot impersonate another identity. This
identifier thus enables privacy protection, agent tracking for the owner, and scalable message
routing [41] as features of layer five.

An agent which has passed all security layers, has successfully been inspected (program code
and task context), and identified by means of digital signatures of the owner and the senders
(constituting the itinerary of an agent). These informations are used to dynamically assign a
specific role to the agent. In turn, a role corresponds to a certain set of permissions which
enforce the local role-based security policy. This mean of access control is implicitly used for
all resources as there are the services published within the platform’s environment as well as
basic Java interfaces to the network or other data sources located on the local host.

Filter

Tool Classes

PKCS#7/8/9/10/12, X.501, X.509

ASN.1/DER

Translator

JCA/JCE

... Flexi
ProviderA8

Figure 12: The crypto layers, SeMoA’s security framework is based on.

Finally, administration during runtime allows the adjustment of current security filters and poli-
cies, and audit together with logging enables traceability of processes. To implement these
security mechanisms, SeMoA supports a lot of (security) standards (see 12.

5.2 Security of Web Services

The current use of web services to share information and services across organisations make
necessary a new mean of access control. Figure 13 gives an overview of existing web service
security mechanism, which are described in the following:

Transport Layer Security (SSL/TLS): SSL/TLS [20] offer a secure channel on the transport
layer. The server is authenticated based on certificates, the client is authenticated via

24

Trasnport Layer (HTTP, FTP, SMTP, JMS, etc.)

Transmission Control Protocol and Internet Protocol (TCP/IP)

Transport-Level Security: Secure Socket Layer (SSL/TLS)

Web Service Security (WS-Security)

Simple Object Access Protocol (SOAP)

High-Level Security Frameworks

(SAML, XACML, XrML, etc.)

XML Digdital Signature

XML Encryption

XML
 Frameworks

Non-XML
 Frameworks

Figure 13: Web service security framework [7]

password or certificate. Nevertheless SSL/TLS neither offer application level security nor
non-repudiation.

Web Services Security (WS-Security):If we assume malicious hosts, transport level security
is possibly not enough. The transport level is controlled by the host, so the web service
itself cannot verify the user credentials. The industry standard WS-Security [2] offers
application level security as an extension to SOAP. It defines how to integrate various
XML Security concepts as XML Signature [4], XML Encryption [22] or the Security
Assertion Meta Language (SAML) [34] into SOAP.

TheXML Encryption normdefines a syntax for selective encryption of XML documents.

The XML Signature normdefines a syntax for digital signatures that are embedded in
XML documents. The signed data can be contained in the same XML structure or in
an external document, even in an non-XML document. XML signature ensures that a
message is not modified during transport. Furthermore the signer of the message cannot
repudiate having sent the message.

Security Assertion Meta Language (SAML): SAML defines a XML-based framework for cre-
ating and exchanging authentication and authorization information. The standard purpose
of using SAML is to realize Web Single-Sign-On. The user authenticates at the first site,
retrieves an authentication and authorization token and subsequently uses this token to
access further services without the the need of re-authentication.

XML Access Control Specifications: The XML Access Control Markup Language (XACML)
[35] is an extension to SAML that focuses on access control rights. XACML defines how
to express access policies. Furthermore it specifies a request/response protocol between a
policy decision and a policy enforcement point.

The XML Rights Markup Language (XrML) [13] has a similar scope as XACML. The
difference to XACML is its focus on digital rights management.

At the latest when combining basic web services to composite web services with added-value,
the simple interaction paradigm between an explcit client and one service provider as server

25

becomes obsolete. Rather, a dynamic tree models temporary bidirectional requestor/provider
associations as part of a dependency hierarchy, established by a client at the root of the tree
(compare [36]). Since a requestor then accesses a remote resource through a provider’s web ser-
vice on behalf of another entity (the client), authentication and authorization mechanisms have
to be established, which support this kind of delegation principle, and concurrently minimize
the overhead for the requesting client.

In this context, [27] compares current authentication and authorization infrastructures, while [10]
discusses and proposes a new framework for web service access control based on the above pre-
sented standards which decouples authentication and authorization, and further takes dynamic
aspects (as there is the request context by means of an access history) into account.

In our opinion, appropriate standard-based security mechanisms for web services have to be se-
lected and combined according to specified security requirements. Especially in the context of
integrating mobile agents and web services, the existing security frameworks for both technolo-
gies have to be thoroughly combined without enabling new side-channel attacks to the integrated
system.

5.3 Security Architecture

We define our web service gateway as resource, so the host can decide who can use the web
service interface for his agents.

The web server decides whether an agent may use the web service as a resource. This right
given, the agent is responsible for deciding on the access to its services. An agent owner can
either make an agent publicly available or restrict access to a dedicated user community. If the
agent owner wants to restrict the access, an LDAP-based directory is used to check identities.
The LDAP directory contains the user community of the host and is therefore chosen by the
host.

To authenticate users, both SSL/TLS and WS-Security can be used, whereas in case of a mali-
cious host, neither the use of transport layer security nor the use of web service layer security
can assure correct results.

Figure 14 shows our approach to secure the agents. To realize authentication we chose SSL/TLS
because of its easy integration into Axis. The credentials of a web service consumer are option-
ally checked against a LDAP user directory.

At the moment we don’t have access control mechanisms integrated. We plan to integrate access
control on an agent based granularity. We are planning to integrate XACML for this purpose.

6 Discussion and Future Work

Our approach of integrating web services and mobile agents can be compared with agent inter-
operability described in [38] (see Section 2.1). But instead of creating an appropriate environ-
ment for foreign components within the local agent system, we extend the local agent system
with a web service enginewhich allows agents to interact with regular (in this case “foreign”)
web service components in a transparent way. The other way round, we rather follow the pro-
posed design paradigms by automatically presenting agent services as Web services to outside

26

SeMoA Platform

Services / Agents

AXIS Engine

ClientWS-GW

User
Directory LDAP

SSL/TLS Tunel

Figure 14: Web service security mechanisms

world, if needed. In this case we don’t map between an agent and the agent system, but an agent
and remote web service clients, which are generally located beyond the boundaries of the local
agent platform.

If we want to compare our architecture with existing frameworks integrating agents and web
services, we have to distinguish static agent and mobile agent systems, and additionally have to
have a deeper look on the service interaction paradigm implemented by the corresponding agent
system.

Most of the frameworks based on static agent systems [5, 28, 14, 43, 44, 21] (see Section 2.3)
presuppose FIPA-compliant communication between agents, and a FIPA-compliant mechanism
for service description and discovery (cf. [17, 16]). Since interaction is based on the exchange of
messages, all the approaches lead to components (a generic gateway, or single wrapper agents)
which map incoming FIPA-ACL messages and service register/deregister/search requests into
messages of the corresponding web service protocol, and vice versa. These components further
have to bridge the gap between asynchronous behavior of FIPA-ACL, and synchronous behavior
of SOAP-based service invocation. Except the latest and most advanced framework described
by Greenwood et al., which aims to implement all mechanisms for biderectional system inte-
gration in one single gateway component, the approaches need manual configuration steps for
each integration process, which is partly automated but cannot be done during runtime. The
framework described in [51] rather focuses on QoS monitoring for “web” services provided
by client or server sided static J2EE-based agents, than on transparent integration of these two
technologies.

In contrast, the existing contributions based on mobile agent systems have more diverse goals,
and thereby do not completely follow transparent integration of agents and web services. This
can certainly be reasoned by the lack of standards and the resulting diverseness of mobile agent

27

systems, and further by the different application scenarios in which mobile agents are utilized in
these approaches. While some approaches make use of specific advantages of mobile agents in
the field of load balancing [6], or the efficient and concurrent task execution in distributed and
mobile environments [30, 29], others focus on dynamic and efficient selection of web services
through mobile agens [36] (compare Section 2.4). Instead of integrating web service support
into an existent mobile agent system, Cooney et al. extended the .NET framework for web ser-
vices with the ability of service migration [11] based on a rudimentary agent mobility paradigm.
Since they mainly created a new service platform from the scratch, there was barely obligation
to map existing mechanisms for service description and invocation to the web service world.
The realization of mobile web services described in [23] represents a high level approach of
system integration. Due to an interpreter agent encapsulating web service logic, this approach is
mostly independent of the underlying mobile agent system and the given interaction paradigms.
Thereby, this approach does not integrate web services into the underlying agent system, but
extends the underlying system with web service support on an upper layer. As consequence, ex-
isting services of the underlying system cannot be reused transparently as web services, whereas
the developer of mobile web services has a new workflow based programming model to imple-
ment composite services.

Although we have given concrete application scenario examples of mobile web services in Sec-
tion 1.3.2, our system architecture is not restricted to these, nor is it exclusively bound to Se-
MoA. Nevertheless the architecture differs from most of the above mentioned ones dealing with
static agent systems, since we build upon local service interaction transparently based on the
simple paradigm of direct method invocation in Java. On the one hand, we don’t have to map
any asynchronous protocol behaviour to the synchronous behavior of SOAP. Since we provide
automated runtime integration of web services, we have to cope with optimized and dynamic
web service stub provisioning, on the other hand. The above summarized frameworks dealing
with mobile agent systems, either enrich the web service world with specific advantages of mo-
bile agent technology, or bind the mobile agent world to web service technology. In contrast,
our architecture aims to provide bidirectional integration of both technologies in a seamless
way. Fulfilling the assumptions (see Section 3.1), our web service engine can be integrated
into existing mobile agent systems, transparently connecting these with web service compliant
frameworks. Another aspect which has been neglected by these approaches is the overall secu-
rity of the resulting service platform. Mobile agent technology itself already enables a couple of
unusual attacks [8, 25, 26, 12, 39, 45]. When opening local agent services to the web by means
of web service invocation as alternative to the interaction paradigms of the agent system, this
might involve new side-channel attacks to the mobile agent system.

Up to now, services in SeMoA are simply described, registered, and searched by means of a
path in the local service namespace together with the implemented Java interfaces. On this level
of syntactic service description, the local service registry is automatically extended by the web
service engine towards distributed (web) service management. This mean of service discovery
has been integrated into the agent system in a transparent way for the agent developer. But
in case, regular web service clients search for appropriate service implementations, this kind
of service management might not be sufficient anymore, since the framework is not able to
automatically generate a semantic service description from the agent service. Nevertheless, the
support of semantic service descriptions can easily be integrated into the web service engine,
when either the agent platform supports these, or in case of the current SeMoA implementation

28

provides them together with the agent. Though, the second suggestion would not comply to
transparent web service integration as defined in Section 1.3, anymore.

The current web service engine makes use of existing UDDI registries. Compared to theDomain
Name System(DNS) as naming service for fairly static objects which cannot be used to track
fast migrating mobile agents (compare [41]), the existing UDDI registries might not be suitable
to track mobile web services in the context of load balancing as described in Section 1.3.2.
which frequently change their location. Future work will evaluate these statements, and consider
and analyze more scalable solutions as proposed in [50] with respect to performance issues.

Further implementation details and especially security aspects would exceed the scope of this
report. Thus, they are presented and discusses within another contribution in the context of
secure mobile services.

29

References

[1] Apache. Axis Architecture Guide. Technical Report Version 1.1, The
Apache Software Foundation, 2004. http://ws.apache.org/axis/java/
architecture-guide.pdf .

[2] B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P. Hallam-Baker, J. Klein, B. LaMac-
chia, P. Leach, J. Manferdelli, H. Maruyama, A. Nadalin, N. Nagaratnam, H. Prafullchan-
dra, J. Shewchuk, and D. Simon. Specification: Web Service Security (WS-Security).
Technical Report Versoin 1.0, IBM developerWorks, April 2002.ftp://www6.
software.ibm.com/software/developer/library/ws-secure.pdf .

[3] A. Avila-Rosas, L. Moreau, V. Dialani, S. Miles, and X. Liu. Agents for the Grid: A com-
parison with Web Services (part II: Service Discovery). InProceedings of the First Inter-
national Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS’02),
Bologna, Italy, July 2002.

[4] Mark Bartel, John Boyer, Barb Fox, Brian LaMacchia, and Ed Simon. XML-Signature
Syntax and Processing. W3C recommendation, World Wide Web Consortium (W3C),
February 2002.http://www.w3.org/TR/xmldsig-core/ .

[5] Frank Büscher. How Multi-Agent Systems and Web Services can work together. In
Net.ObjectDays 2004: NODe Young Researchers Workshop ’04, Erfurt, Germany, Septem-
ber 2004.

[6] J. Cao, Y. Sun, Y. Wang, and S.K. Das. Scalable Load Balacning on Distributed
Web Servers Using Mobile Agents.Journal on Parallel and Distributed Computing,
63(10):996–1005, October 2003. ISSN:0743-7315.

[7] Marc Chaniliau. Web Services-Sicherheit und die SAML. Online article, XML and Web
Services Magazin, January 2004.http://www.entwickler.com/itr/online_
artikel/psecom,id,468,nodeid,69.ht%ml .

[8] David M. Chess. Security issues in mobile code systems. In Vigna [45], pages 1–14.

[9] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL), Version 1.1. W3C working group note, World Wide Web Consortium
(W3C), March 2001.http://www.w3.org/TR/2001/NOTE-wsdl-20010315 .

[10] M. Coetzee and J.H.P. Eloff. Towards Web Service access control. InComputers & Secu-
rity, volume 23, pages 559–570. Elsevier, October 2004.

[11] Dominic Cooney and Paul Roe. Mobile Agents Make for Flexible Web Services. In
Proceedings of The Ninth Australian World Wide Web Conference, Quensland, Australia,
July 2003.http://ausweb.scu.edu.au/aw03/papers/cooney/ .

[12] A. Corradi, R. Montanari, and C. Stefanelli. Mobile agents protection in the Internet envi-
ronment. InThe 23rd Annual International Computer Software and Applications Confer-
ence (COMPSAC ’99), pages 80–85, 1999.

[13] CoverPages. Extensible Rights Markup Language (XrML). Technology reports, Cover-
pages, March 2003.http://xml.coverpages.org/xrml.html .

30

[14] Jonathan Dale, Akos Hajnal, Martin Kernland, and Laszlo Zsolt Varga. Integrat-
ing Web Services into Agentcities Recommendation. Technical report, Agentcities
Task Force, November 2003.http://www.agentcities.org/rec/00006/
actf-rec-00006a.pdf .

[15] FIPA. ACL message structure specication. Technical Report FIPA document XC00061E,
Foundation for Intelligent Physical Agents, August 2001.http://www.fipa.org/
specs/fipa00061/ .

[16] FIPA. FIPA Agent Discovery Service Specification. Preliminry FIPA document
PC00095A, Version 1.2e, Foundation for Intelligent Physical Agents, October 2003.
http://www.fipa.org/specs/fipa00095 .

[17] FIPA. FIPA Agent Management Specification. Standard FIPA document SC00023K,
Foundation for Intelligent Physical Agents, March 2004.http://www.fipa.org/
specs/fipa00023 .

[18] John Fou. Web Services and Mobile Intelligent Agents - Combining Intelligence
with Mobility, 2001. http://www.webservicesarchitect.com/content/
articles/fou02.asp .

[19] Stan Franklin and Art Graesser. Is it an Agent, or just a Program? InIntelligent Agents
III , volume 1193 ofLecture Notes in Artificial Intelligence, pages 21–36, Berlin, 1997.
Springer Verlag.

[20] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL Protocol, Version 3.0. Internet
draft, Netscape, November 1996.http://wp.netscape.com/eng/ssl3/ .

[21] Dominic Greenwood and Monique Calisti. Engineering Web Service - Agent Integration.
In IEEE International Conference on Systems, Man and Cybernetics (SMC 2004), The
Hague, The Netherlands, October 2004.

[22] Takeshi Imamura, Blair Dillaway, and Ed Simon. XML Encryption Syntax and Processing.
W3C recommendation, World Wide Web Consortium (W3C), Dezember 2002.http:
//www.w3.org/TR/xmlenc-core/ .

[23] Fuyuki Ishikawa, Nobukazu Yoshioka, Yasuyuki Tahara, and Shinichi Honiden. To-
ward Synthesis of Web Services and Mobile Agents. InProceedings of the AA-
MAS’2004 Workshop on Web Services and Agent-based Engineering (WSABE), New
York, USA, July 2004.http://honiden-lab.ex.nii.ac.jp/~f-ishikawa/
docs/wsabe2004/camera-ready%.pdf .

[24] Dag Johansen. Mobile Agents: Right Concepts, Wrong Approach. InProceedings of
the IEEE International Conference on Mobile Data Management (MDM’04), Berkeley,
California, USA, January 2004.

[25] G. Karjoth, N. Asokan, and C. Gülcü. Protecting the computation results of free–roaming
agents. InProceedings of the Second International Workshop on Mobile Agents (MA ’98),
pages 195–207.

[26] Neeran M. Karnik and Anand R. Tripathi. Security in the Ajanta mobile agent system.
Technical Report TR-5-99, University of Minnesota, Minneapolis, MN 55455, U. S. A.,
May 1999.

31

[27] Javier Lopez, Rolf Oppliger, and Günther Pernul. Authentication and authorization in-
frastructures (AAIs): a comparative survey. InComputers & Security, volume 23, pages
578–590. Elsevier, October 2004.

[28] M. Lyell, L. Rosen, M. Casagni-Simkins, and D. Norris. On Software Agents and Web
Services: Usage and Design Concepts and Issues. InThe 1st International Workshop on
Web Services and Agent-based Engineering, Sydney, Australia, July 2003.

[29] Zakaria Maamar, Wathiq Mansoor, Hamdi Yahyaoui, and Arif Bhati. Towards an Environ-
ment of Mobile Servies: Architecture and Security. InThe 2003 International Conference
on Information Systems and Engineering (ISE 2003), Quebec, Canada, July 2003.

[30] Zakaria Maamar, Quan Z. Sheng, and Boualem Benatallah. Interleaving Web Services
Composition and Execution Using Software Agents and Delegation. InThe 1st Interna-
tional Workshop on Web Services and Agent-based Engineering, Sydney, Australia, July
2003.

[31] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman, K. Kosaka,
D. Lange, K. Omo, M. Oshima, C. Tham, S. Virdhagriswaran, and J. White. MASIF -
The OMG Mobile Agent System Interoperability Facility. In K. Rothermel and F. Hohl,
editors,Proceedings of the Second International Workshop on Mobile Agents (MA ’98),
volume 1477 ofLecture Notes in Computer Science, pages 50–67. Springer Verlag, Berlin
Heidelberg, 1998.

[32] Luc Moreau. Agents for the Grid: A Comparison with Web Services (Part I: the transport
layer). In Proceedings of the Second IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID 2002), Berlin, Germany, May 2002.

[33] OASIS. Universal Description, Discovery and Integration (UDDI), Version 3. Techni-
cal committee specification, Organization for the Advancement of Structured Information
Standards (OASIS), October 2003.http://www.uddi.org/pubs/uddi_v3.htm .

[34] OASIS. Security Assertions Markup Language (SAML), Version 2.0. Working draft,
Organization for the Advancement of Structured Information Standards (OASIS), 2004.
http://www.oasis-open.org/committees/security .

[35] OASIS. XML Access Control Markup Language (XACML), Version 2.0. Com-
mittee draft, Organization for the Advancement of Structured Information Standards
(OASIS), September 2004.http://docs.oasis-open.org/xacml/access_
control-xacml-2_0-core-spec-cd-%02.pdf .

[36] Amir Padovitz, Shonali Krishnaswamy, and Seng Wai Loke. Towards Efficient Selection
of Web Services. InThe 1st International Workshop on Web Services and Agent-based
Engineering, Sydney, Australia, July 2003.

[37] Ulrich Pinsdorf. A Formal Approach for Interoperability between Mobile Agent Systems
and Component Based Architectures. InProceedings of 11th IEEE International Confer-
ence on the Engineering of Computer-Based Systems (ECBS 2004), Brno, Czech Republic,
May 2004. Institute of Electrical and Electronics Engineers, IEEE Computer Society Press.

[38] Ulrich Pinsdorf and Volker Roth. Mobile Agent Interoperability Patterns and Practice. In
Proceedings of Ninth IEEE International Conference and Workshop on the Engineering

32

of Computer-Based Systems (ECBS 2002), Computer Graphics Edition, pages 238–244,
University of Lund, Lund, Sweden, April 2002. Institute of Electrical and Electronics
Engineers, IEEE Computer Society Press. ISBN 0-7695-1549-5.

[39] Volker Roth. Mutual protection of co–operating agents. In Jan Vitek and Christian Jensen,
editors,Secure Internet Programming: Security Issues for Mobile and Distributed Objects,
volume 1603 ofLecture Notes in Computer Science, pages 275–285. Springer-Verlag Inc.,
New York, NY, USA, 1999.

[40] Volker Roth and Mehrdad Jalali. Concepts and Architecture of a Security-centric Mo-
bile Agent Server. InProc. Fifth International Symposium on Autonomous Decentralized
Systems (ISADS 2001), Dallas, Texas, U.S.A., March 2001. IEEE Computer Society Press.

[41] Volker Roth and Jan Peters. A Scalable and Secure Global Tracking Service for Mobile
Agents. InProc. Mobile Agents 2001, Lecture Notes in Computer Science. 5th IEEE
International Conference Mobile Agents (MA), Springer Verlag, December 2001.

[42] Volker Roth, Ulrich Pinsdorf, and Walter Binder. Mobile Agent Interoperability Revisited.
In Keith Marzullo, Amy L. Murphy, and Gian Pietro Picco, editors,Mobile Agents 2001.
Poster Session, pages 5–8, Atlanta, Georgia, USA, December 2001. 5th IEEE International
Conference Mobile Agents (MA), IEEE Society Press.

[43] Laszlo Z. Varga. WSDL2Agent: Tool to Help the Integration of Existing Web Services
into Agent Systems and Semantic Web Service Environments.http://sas.ilab.
sztaki.hu:8080/wsdl2agent/ .

[44] Laszlo Zsolt Varga, Ãkos Hajnal, and Zsolt Werner. An Agent Based Approach for Mi-
grating Web Services to Semantic Web Services. In11th International Conference on
Artificial Intelligence: Methodology, Systems and Applications (AIMSA 2004), Lecture
Notes in Computer Science, pages 371–380, Varna, Bulgaria, September 2004. Springer
Verlag Heidelberg.

[45] Giovanni Vigna, editor.Mobile Agents and Security, volume 1419 ofLecture Notes in
Computer Science. Springer Verlag, Berlin Heidelberg, 1998.

[46] Alexander Hilliger von Thile, Ingo Melzer, and Hans-Peter Steiert. Managers Don’t Code:
Making Web Services Middleware Applicable for End-Users. InEuropean Conference on
Web Services (ECOWS 2004), Erfurt, Germany, September 2004.

[47] W3C. Simple Object Access Protocol (SOAP), Version 1.2. W3C recommendation, World
Wide Web Consortium (W3C), June 2003.http://www.w3.org/TR/soap/ .

[48] W3C. Extensible Markup Language (XML), Version 1.0. W3C working group note, World
Wide Web Consortium (W3C), February 2004.http://www.w3.org/XML/ .

[49] W3C. Web Services Architecture. W3C working group note, World Wide
Web Consortium (W3C), February 2004. http://www.w3.org/TR/2004/
NOTE-ws-arch-20040211/ .

[50] Shoujian Yu, Jianwei Liu, and Jiajin Le. Decentralized Web Service Organization Combin-
ing Semantic Web and Peer to Peer Computing. InEuropean Conference on Web Services
(ECOWS 2004), Erfurt, Germany, September 2004.

33

[51] Soe-Tsyr Yuan and Kwei-Jay Lin. WISE - Building Simple Intelligence into Web Services.
In The 1st International Workshop on Web Services and Agent-based Engineering, Sydney,
Australia, July 2003.

34

